logo

A vér áramlik át a pulmonáris keringés artériáin

Az artériás vér oxigénezett vér. Vénás vér - szén-dioxiddal telített. Az artériák olyan véredények, amelyek vért szállítanak a szívből. A vénák olyan hajók, amelyek vért hordoznak a szívbe.

Vérnyomás: az artériákban a legnagyobb, a kapillárisok átlagában a legkisebb vénákban. Vérsebesség: a legnagyobb az artériákban, a legkisebb a kapillárisokban, az átlagos a vénákban.

Nagy keringés: a bal kamra artériás véréből, először az aortán keresztül, majd az artériákon keresztül a test minden szervéhez. A nagy kör kapillárisaiban a vér vénásvá válik, és az üreges vénákon keresztül a jobb pitvarba lép.

Kis kör: a jobb kamrából a vénás vér a pulmonális artériákon át a tüdőbe kerül. A tüdő kapillárisaiban a vér artériásvá válik, és a tüdővénákon keresztül a bal átriumba kerül.

1. Hozzon létre egy kapcsolatot a személy véredényei és a véráramlás iránya között: 1 a szívből, 2 a szívig
A) a pulmonáris keringés vénái
B) egy nagy vérkeringési kör vénái
B) a pulmonáris keringés artériái
D) a szisztémás keringés artériái

2. Emberekben a szív bal kamrájából származó vér
A) a szerződéskötéskor belép az aortába.
B) összehúzódása alatt a bal átriumba esik
B) oxigénnel ellátja a szervezet sejtjeit
D) belép a tüdő artériába
D) nagy nyomás alatt belép a nagy meredek keringésbe
E) kis nyomás alatt belép a pulmonáris keringésbe

3. Létre kell hozni azt a szekvenciát, amelyben az emberi test a véráramlás nagy körén keresztül mozgatja a vért.
A) egy nagy kör vénái
B) a fej, a karok és a törzs artériái
C) aorta
D) egy nagy kör kapillárisai
D) bal kamra
E) jobb átrium

4. Határozzuk meg azt a szekvenciát, amelyben az emberi test áthalad a vérben a pulmonáris keringésben.
A) bal pitvar
B) tüdőkapillárisok
B) tüdővénák
D) tüdő artériák
D) jobb kamra

5. A vér áramlik át az emberek pulmonális keringésének artériáin.
A) a szívből
B) a szívhez
B) szén-dioxiddal telített
D) oxigénezett
D) gyorsabb, mint a pulmonalis kapillárisokban
E) lassabb, mint a pulmonalis kapillárisokban

6. A vénák olyan véredények, amelyeken keresztül véráramlás lép fel.
A) a szívből
B) a szívhez
B) nagyobb nyomáson, mint az artériákban
D) kisebb nyomás alatt, mint az artériákban
D) gyorsabb, mint a kapillárisoknál
E) lassabb, mint a kapillárisoknál

7. A vér áramlik át a szisztémás keringés artériáin
A) a szívből
B) a szívhez
B) szén-dioxiddal telített
D) oxigénezett
D) Gyorsabb, mint más vérerek.
E) lassabb, mint más vérerek.

8. Állítsa be a vérmozgás sorrendjét a vérkeringés nagy körében.
A) Bal kamra
B) Kapillárisok
B) jobb oldali pitvar
D) artériák
D) Bécs
E) Aorta

9. Határozza meg azt a sorrendet, amelyben a véredényeket a vérnyomás csökkenésének sorrendjében kell elrendezni.
A) vénák
B) Aorta
C) artériák
D) kapillárisok

10. Meg kell állapítani az emberi vérerek típusa és a benne lévő vér típusa közötti összefüggést: 1 - artériás, 2-vénás
A) tüdő artériák
B) a pulmonáris keringés vénái
B) a pulmonális keringés aorta és artériái
D) a felső és alsó vena cava

11. Az emlősökben és az emberekben a vénás vér, ellentétben az artériával,
A) oxigénhiány
B) egy kis körben áramlik át a vénákon
C) kitölti a szív jobb felét
D) szén-dioxiddal telített
D) belép a bal pitvarba.
E) a szervezet sejtjeit tápanyagokkal biztosítja

12. Rendezzük a véredényeket a vér sebességének csökkenésében.
A) superior vena cava
B) aorta
B) brachialis artéria
D) kapillárisok

A keringési rendszer A vérkeringés körei

1. kérdés: Mi a vér áramlik át a nagy kör artériáin, és mi - a kis artériákon keresztül?
Az artériás vér áramlik át a nagy kör artériáin, és a vénás vér áramlik át a kis artériákon.

2. kérdés: Hol kezdődik a nagy forgalom, és hol végződik a kis kör?
Minden hajó két vérkeringési kört alkot: nagy és kicsi. A nagy kör a bal kamrában kezdődik. Ebből indul az aorta, amely egy ív. Arter az aortaívből. Azok a koszorúerek, amelyek a miokardiumot véráramlással látják el az aorta kezdeti részéből. A mellkasban lévő aorta részét a mellkasi aortának nevezik, és a hasüregben lévő részt a hasi aortának nevezik. Az aorta ágai az artériákon, az arteriolák artériái, a kapillárisok arteriolái. Az oxigén és a tápanyagok a nagy kör kapillárisaiból minden szervbe és szövetbe származnak, és a szén-dioxid és a metabolikus termékek a sejtekből a kapillárisokba jönnek. Az artériából vénába transzformálódik.
A máj és a vese edényeiben mérgező bomlástermékekből származó vér tisztítása történik. Az emésztőrendszerből, a hasnyálmirigyből és a lépből származó vér a máj portális vénájába kerül. A májban a portál véna kapillárisokká van elágazva, amelyet ezután ismét a májvénás közös törzsbe egyesítenek. Ez a véna az alacsonyabb vena cava-ba áramlik. Így a hasi szervekből a vérbe a nagy körbe való belépés előtt két vér áthalad két kapilláris hálózaton keresztül: ezen szervek kapillárisai és a máj kapillárisai révén. A máj portálrendszere biztosítja a vastagbélben keletkező mérgező anyagok semlegesítését. A vesében két kapilláris hálózat is létezik: a vese glomerulusok hálózata, amelyen keresztül a káros anyagcsere-termékeket (karbamid, húgysav) tartalmazó vérplazma a nefron kapszula üregébe jut, és egy kapilláris hálózat, amely összehúzott tubulusokat fon.
A kapillárisok beleolvadnak a vénákba, majd a vénákba. Ezután az összes vér belép a jobb és a rosszabb vena cava-ba, amely a jobb átriumba áramlik.
A pulmonáris keringés a jobb kamrában kezdődik és a bal pitvarban végződik. A jobb kamrából származó vénás vér kerül a pulmonális artériába, majd a tüdőbe. Gázcsere történik a tüdőben, a vénás vér artériás lesz. A négy tüdővénában az artériás vér belép a bal pitvarba.

3. kérdés: A nyirokrendszer zárt vagy nyitott rendszerhez tartozik?
A nyirokrendszert fel kell zárni. Akkor vakon kezdődik a nyirokkapillárisok szövetében, amelyek ezután egyesülnek a nyirokrendszer kialakulásához, és ezek viszont nyirokcsatornákat képeznek, amelyek a vénás rendszerbe áramlanak.

Nagy és kis körök a vérkeringésben

Nagy és kis körök az emberi vérkeringésben

A vérkeringés a vér mozgása az érrendszeren keresztül, amely biztosítja a gázcserét a szervezet és a külső környezet között, a szervek és szövetek közötti anyagcserét, valamint a szervezet különböző funkcióinak humorális szabályozását.

A keringési rendszer magában foglalja a szív és a vérerek - az aorta, az artériák, az arteriolák, a kapillárisok, a vénák, a vénák és a nyirokerek. A vér a szívizom összehúzódása miatt áthalad az edényeken.

A forgalom zárt rendszerben történik, amely kis és nagy körökből áll:

  • A vérkeringés nagy köre minden szervet és szövetet tartalmaz a vérben és a tápanyagokban.
  • Kis vagy tüdő vérkeringés célja, hogy a vér oxigénnel gazdagítsa.

A vérkeringési köröket először William Garvey angol tudós írta le 1628-ban az Anatómiai vizsgálatok a szív és a hajók mozgásáról című munkájában.

A pulmonalis keringés a jobb kamrából indul ki, csökkentésével a vénás vér a tüdőtörzsbe kerül, és a tüdőn keresztül áramlik ki szén-dioxidot és oxigénnel telít. Az oxigénnel dúsított vér a tüdőből áthalad a tüdővénákon a bal pitvarban, ahol a kis kör véget ér.

A szisztémás keringés a bal kamrából indul ki, ami csökkentve oxigénnel gazdagodik, az összes szerv és szövet aortájába, artériáiba, arterioláiba és kapillárisaiba szivattyúzódik, és onnan a vénákon és a vénákon keresztül áramlik a jobbra, ahol a nagy kör véget ér.

A vérkeringés nagy körének legnagyobb hajója az aorta, amely a szív bal kamrájából terjed ki. Az aorta egy ívet képez, amelyből az artériák elágazódnak, vért hordoznak a fejre (carotis artériák) és a felső végtagokra (vertebralis artériák). Az aorta leereszkedik a gerinc mentén, ahol az ágak elhúzódnak, vért szállítanak a hasi szervekbe, a törzs és az alsó végtag izmaiba.

Az artériás vér, oxigénben gazdag, áthalad az egész testen, a szervek és szövetek sejtjeihez szükséges tápanyagokat és oxigént szállít, és a kapilláris rendszerben vénás vérré válik. A szén-dioxiddal és a celluláris anyagcsere termékekkel telített vénás vér visszatér a szívbe, és belép a tüdőbe a gázcsere céljából. A vérkeringés nagy körének legnagyobb vénái a felső és alsó üreges vénák, amelyek a jobb pitvarba áramolnak.

Ábra. A kis és nagy körök vérkeringési rendszere

Meg kell jegyezni, hogy a máj és a vese keringési rendszerei szerepelnek a szisztémás keringésben. A gyomor, a belek, a hasnyálmirigy és a lép kapillárisaiból és vénáiból származó minden vér belép a portálvénába, és áthalad a májon. A májban a portális vénák kis vénákba és kapillárisokba kerülnek, amelyeket ezután újra összekapcsolnak a máj vénájának közös törzsével, amely az alsó vena cava-ba áramlik. A hasi szervek összes vérét a szisztémás keringésbe való belépés előtt két kapilláris hálózaton keresztül áramlik: ezeknek a szerveknek a kapillárisai és a máj kapillárisai. A máj portálrendszere nagy szerepet játszik. Biztosítja a vastagbélben kialakuló mérgező anyagok semlegesítését azáltal, hogy a vékonybélben az aminosavakat szétválasztják, és a vastagbél nyálkahártyája a vérbe szívódik fel. A máj, mint minden más szerv is, artériás vért kap a máj artériáján keresztül, amely a hasi artériából terjed.

A vese két kapilláris hálózata is van: mindegyik malpighus glomerulusban van egy kapilláris hálózat, majd ezek a kapillárisok egy artériás edénybe csatlakoznak, amely ismét kapillárisokká bomlik, csavart csöves csövek.

Ábra. A vér keringése

A májban és a vesében a vérkeringés egyik jellemzője a véráramlás lassulása a szervek működéséből adódóan.

1. táblázat: A véráramlás különbsége a vérkeringés nagy és kis körében

Véráramlás a szervezetben

Nagy vérkeringési kör

A keringési rendszer

A szív melyik részén kezdődik a kör?

A bal kamrában

A jobb kamrában

A szív melyik részében végződik a kör?

A jobb oldalon

A bal pitvarban

Hol történik a gázcsere?

A mellkasi és hasi üregek szervében található kapillárisok, agy, felső és alsó végtagok

A kapillárisokban a tüdő alveoláiban

Milyen vér mozog az artériákon?

Milyen vér mozog a vénákon?

A vér egy körbe mozgatása

A szervek és szövetek oxigénnel való ellátása és a szén-dioxid átadása

A vér oxigenizációja és a szén-dioxid eltávolítása a szervezetből

A vérkeringés ideje a vérrészecskék egyetlen áthaladásának ideje az érrendszer nagy és kis körzetein keresztül. További részletek a cikk következő részében.

A véredények mintái az edényeken keresztül

A hemodinamika alapelvei

A hemodinamika olyan fiziológiai rész, amely a vér áthaladásának mintáit és mechanizmusait vizsgálja az emberi test edényein keresztül. A tanulmányozás során a terminológiát használják, és figyelembe veszik a hidrodinamika törvényeit, a folyadékok mozgásának tudományát.

A vér mozgásának sebessége, de az edényekre két tényezőtől függ:

  • a vérnyomás különbségéből az edény elején és végén;
  • az ellenállástól, amely megfelel a folyadéknak az útjában.

A nyomáskülönbség hozzájárul a folyadék mozgásához: minél nagyobb, annál intenzívebb ez a mozgás. Az érrendszer rezisztenciája, amely csökkenti a vérmozgás sebességét, számos tényezőtől függ:

  • a hajó hossza és sugara (minél nagyobb a hossza és minél kisebb a sugár, annál nagyobb az ellenállás);
  • a vér viszkozitása (ez a víz viszkozitásának ötszöröse);
  • a véredények súrlódása a véredények falain és egymás között.

Hemodinamikai paraméterek

A véráramlás sebességét a véredényekben a hemodinamika törvényei szerint végezzük, a hidrodinamika törvényeihez hasonlóan. A véráramlás sebességét három mutató jellemzi: a térfogatáram sebességét, a lineáris véráramlási sebességet és a vérkeringés idejét.

A véráram volumetrikus aránya az adott kaliberű tartály minden egyes tartályának keresztmetszetén átáramló vér mennyisége.

A véráramlás lineáris sebessége - az egyes vérrészek mozgási sebessége a hajónként az időegységenként. Az edény közepén a lineáris sebesség maximális, és az edényfal közelében a megnövekedett súrlódás miatt minimális.

A vérkeringés ideje az az idő, amely alatt a vér áthalad a nagy és kis vérkeringési körökön, általában 17-25 másodperc. Körülbelül 1/5-ös kört töltenek egy kis körön át, és ennek az időnek a 4/5-ét egy nagy áthaladásra fordítják.

A véráramlás hajtóereje az egyes vérkeringési körök érrendszerében a vérnyomás különbsége (ΔP) az artériás ágy kezdeti részén (a nagy kör aorta) és a vénás ágy utolsó része (üreges vénák és jobb oldali pitvar). A vérnyomás különbsége (ΔP) az edény elején (P1) és annak végén (P2) a véráramlás hajtóereje a keringési rendszer bármely edényén. A vérnyomás-gradiens erőt alkalmazzuk az érrendszerben és az egyes edényekben a véráramlással szembeni ellenállás leküzdésére. Minél nagyobb a vérnyomás-gradiens a vérkeringés körében vagy egy külön edényben, annál nagyobb a vér mennyisége.

A vér áthaladásának legfontosabb mutatója a véráramlás volumetrikus sebessége, vagy a térfogati véráramlás (Q), amellyel megértjük az érfogat teljes keresztmetszetén áthaladó vér térfogatát, vagy az egyes edények átmérőjét időegységenként. A térfogat véráramlási sebességét literben / percben (l / perc) vagy milliliterben percben (ml / perc) fejezzük ki. A térfogatrendszeri véráramlás fogalmát az aorta vagy a szisztémás keringő véredények bármely más szintjének teljes keresztmetszetének a térfogati véráramlásának értékelésére használjuk. Mivel az időegységenként (percben) a bal kamra által kibocsátott teljes vérmennyiség az idő folyamán áthalad a vérkeringés nagy körének aortáján és más edényein, a minuscule blood volume (IOC) kifejezés a szisztémás véráramlás fogalmának szinonimája. Egy felnőtt pihenőhelye 4–5 l / perc.

A testben volumetrikus véráramlás is van. Ebben az esetben a test összes artériás vénás vagy kimenő vénás vénájából az időegységenként áramló teljes véráramlást kell érteni.

Így a térfogati véráram Q = (P1 - P2) / R.

Ez a képlet a hemodinamika alapjogának lényegét fejezi ki, amely kimondja, hogy az érrendszer teljes keresztmetszetén vagy az egyedülálló edényen az időegységenként áramló vér mennyisége közvetlenül arányos a vérnyomás különbségével az érrendszer (vagy az edény) elején és végén, és fordítottan arányos a jelenlegi ellenállással. vér.

A teljes (szisztémás) perc véráramlást egy nagy körben úgy számítják ki, hogy figyelembe veszik az átlagos vérnyomást az aorta P1 elején és az üreges vénák P2 szájánál. Mivel a vénák ebben a részében a vérnyomás közel van a 0-hoz, akkor a P értéke, amely az aorta kezdetén az átlagos hidrodinamikai artériás vérnyomással egyenlő, a Q vagy IOC számításánál helyettesíthető: Q (IOC) = P / R.

A hemodinamika alaptörvényének egyik következménye - a véráramlás hajtóereje az érrendszerben - a szív munkája által létrehozott vér nyomásának köszönhető. A vérnyomás értékének meghatározó jelentőségének megerősítése a véráramlásra a véráram pulzáló jellege a szívciklus során. A szív-szisztolés során, amikor a vérnyomás eléri a maximális szintet, a véráramlás nő, és a diasztolé alatt, amikor a vérnyomás minimális, a véráramlás gyengül.

Mivel a vér áthalad az edényeken az aortából az erekbe, a vérnyomás csökken, és csökkenése arányos a véráramlással szembeni ellenállással. Különösen gyorsan csökkenti az arteriolák és a kapillárisok nyomását, mivel nagy ellenállással rendelkeznek a véráramlással szemben, kis sugarú, nagy teljes hosszukkal és számos ággal, ami további akadályt jelent a véráramlás számára.

A vérkeringés nagy körének vaszkuláris ágyában kialakult vérárammal szembeni rezisztenciát általános perifériás ellenállásnak (OPS) nevezik. Ezért a térfogatáram kiszámításának képletében az R szimbólum helyettesíthető az analóg - OPS:

Q = P / OPS.

Ebből a kifejezésből számos fontos következmény következik, amelyek szükségesek ahhoz, hogy megértsük a szervezetben a vérkeringési folyamatokat, értékeljük a vérnyomás mérését és eltéréseit. A hajó ellenállását befolyásoló tényezőket, a folyadék áramlását a Poiseuille-törvény írja le, amely szerint

ahol R ellenállás; L a hajó hossza; η - vér viszkozitása; Π - 3.14. Szám; r a hajó sugara.

A fenti kifejezésből az következik, hogy mivel a 8 és Π számok állandóak, a felnőtteknél L nem változik sokat, a perifériás véráramlással szembeni rezisztencia mennyiségét a hajó sugárának r és a viszkozitás η változó értékei határozzák meg.

Már említettük, hogy az izomtípusú hajók sugara gyorsan változhat és jelentős hatást gyakorolhat a véráramlással szembeni ellenállásra (így a nevük rezisztív edények) és a véráramlás mennyisége a szerveken és szöveteken keresztül. Mivel az ellenállás a sugárnak a 4. fokhoz viszonyított nagyságától függ, még a hajók sugárának kis ingadozása is erősen befolyásolja a véráramlással szembeni ellenállás értékeit. Tehát például, ha a hajó sugara 2 mm-ről 1 mm-re csökken, az ellenállása 16-szor növekszik, és állandó nyomás-gradiens esetén a véráramlás ebben az edényben is 16-szor csökken. Az ellenállás fordított változásait az edény sugara 2-szeres emelkedésével figyeli meg. Állandó átlagos hemodinamikai nyomás esetén az egyik szervben a véráramlás a másikban csökkenhet, attól függően, hogy az arteriális erek és a vénák simaizomjai összehúzódnak-e vagy lazulnak.

A vér viszkozitása az eritrociták (hematokrit), fehérje, plazma lipoproteinek és a vér aggregálódásának állapotától függ. Normál körülmények között a vér viszkozitása nem változik olyan gyorsan, mint az edények lumenje. A vérveszteség, az eritropenia, a hipoproteinémia után a vér viszkozitása csökken. Jelentős eritrocitózis, leukémia, fokozott eritrocita aggregáció és hiperkoaguláció esetén a vér viszkozitása jelentősen megnőhet, ami a véráramlás fokozott ellenállásához, a myocardium megnövekedett terheléséhez és a mikrovaszkuláris edényekben a véráramlás csökkenéséhez vezethet.

Egy jól megalapozott vérkeringési módban a bal kamra által kioltott és az aorta keresztmetszetén átáramló vér térfogata megegyezik a vérkeringés nagy körének bármely más részének a teljes keresztmetszetében áthaladó vér térfogatával. Ez a vérmennyiség visszatér a jobb pitvarra, és belép a jobb kamrába. Ettől kezdve a vér a pulmonáris keringésbe kerül, majd a tüdővénákon keresztül visszatér a bal szívbe. Mivel a bal és jobb kamrai IOC azonos, és a vérkeringés nagy és kis körei sorba vannak kapcsolva, az érrendszerben a véráram volumetrikus aránya változatlan marad.

A véráramlási viszonyok változásai során például, ha vízszintes helyzetből függőleges helyzetbe megyünk, amikor a gravitáció az alsó felsőtest és a lábak vénáiban átmenetileg felhalmozódik a vér, a bal és jobb kamra IOC rövid időre eltérő lehet. Hamarosan a szív működését szabályozó intracardiac és extracardiac mechanizmusok összehangolják a véráramlást a kis és nagy vérkeringési körökön.

A vér vénás visszatérésének a szívbe történő visszaesése, ami a stroke térfogatának csökkenését okozza, a vér vérnyomása csökkenhet. Ha jelentősen csökken, az agyba történő véráramlás csökkenhet. Ez magyarázza a szédülés érzését, amely egy személy hirtelen átmenetétől függőleges helyzetbe kerülhet.

A véráramok térfogata és lineáris sebessége az edényekben

Az érrendszerben a teljes vérmennyiség fontos homeosztatikus indikátor. A nők átlagos értéke 6-7%, a férfiak 7-8% -a, és 4-6 liter között van; Az ebből a térfogatból származó vér 80-85% -a a vérkeringés nagy körének edényeiben van, mintegy 10% -a a vérkeringés kis körének edényeiben, és körülbelül 7% a szívüregben.

A vér nagy része a vénákban van (kb. 75%) - ez jelzi a vérkeringésben betöltött vérben betöltött szerepét.

A vér mozgását az edényekben nemcsak térfogat, hanem lineáris véráramlás sebesség jellemzi. Alatta megérti azt a távolságot, amelyet egy darab vér időegységenként mozog.

A térfogat és a lineáris véráramlás sebessége között a következő kifejezés jellemzi:

V = Q / Pr 2

ahol V a véráramlás lineáris sebessége, mm / s, cm / s; Q - véráramlás sebessége; P - 3.14-es szám; r a hajó sugara. A Pr 2 értéke a hajó keresztmetszeti területét tükrözi.

Ábra. 1. A vérnyomás változása, a lineáris véráramlás sebessége és a keresztmetszeti terület az érrendszer különböző részein

Ábra. 2. Az érrendszer hidrodinamikai jellemzői

A lineáris sebesség nagyságrendjének az edények térfogati keringési rendszerére gyakorolt ​​függésének kifejeződéséből kiderül, hogy a véráramlás lineáris sebessége (1. ábra) arányos a tartály (ok) on áthaladó térfogati véráramával, és fordítottan arányos az edény (ek) keresztmetszetével. Például a nagy keringési körben a legkisebb keresztmetszeti területű (3-4 cm 2) aortában a vérmozgás lineáris sebessége a legnagyobb és 20-30 cm / s nyugalomban van. Edzés közben 4-5-ször nőhet.

A kapillárisok felé az edények teljes keresztirányú lumenje nő, következésképpen az artériákban és az arteriolákban a véráramlás lineáris sebessége csökken. Kapilláris edényekben, amelyek teljes keresztmetszeti területe nagyobb, mint a nagy kör bármely más szakaszában (az aorta keresztmetszete 500-600-szorosa), a véráramlás lineáris sebessége minimális (kevesebb, mint 1 mm / s). A kapillárisok lassú véráramlása a legjobb feltételeket biztosítja a vér és a szövetek közötti metabolikus folyamatok áramlásához. A vénákban a véráramlás lineáris sebessége a teljes keresztmetszet területének csökkenése következtében emelkedik a szívhez közeledve. Az üreges vénák szájánál 10-20 cm / s, és terheléssel 50 cm / s-ra növekszik.

A plazma és a vérsejtek lineáris sebessége nemcsak az edény típusától, hanem a véráramban való elhelyezkedésétől is függ. Van lamináris típusú véráramlás, amelyben a vér jegyzetei rétegekre oszthatók. Ugyanakkor a vérrétegek (főként plazma) lineáris sebessége az edényfal közelében vagy annak közelében van a legkisebb, és az áramlás közepén lévő rétegek a legnagyobbak. A vaszkuláris endothelium és a közeli falrétegek között súrlódási erők keletkeznek, ami a vaszkuláris endotheliumra nyírófeszültségeket hoz létre. Ezek a feszültségek szerepet játszanak az erek-aktív faktorok kialakulásában az endotheliumban, amely szabályozza a vérerek lumenét és a véráramlás sebességét.

A véredények vörösvértestjei (a kapillárisok kivételével) elsősorban a véráramlás központi részén helyezkednek el, és viszonylag nagy sebességgel mozognak benne. Ezzel ellentétben a leukociták főleg a véráram közeli falaiban helyezkednek el, és a gördülő mozgásokat kis sebességgel hajtják végre. Ez lehetővé teszi számukra, hogy az endotélium mechanikai vagy gyulladásos károsodásának helyén tapadjanak az adhéziós receptorokhoz, tapadjanak az edény falához, és a védőfunkciók elvégzésére migrálnak a szövetbe.

A vér lineáris sebességének jelentős növekedésével az edények szűkített részén, az ágak hajóról való kiürülés helyén a vér mozgásának lamináris jellege helyettesíthető egy turbulensre. Ugyanakkor a véráramlásban a részecskék rétegenkénti mozgása zavaró lehet, az edényfala és a vér között, nagy súrlódási és nyíróerőhatások léphetnek fel, mint a lamináris mozgás során. A Vortex véráramlása fejlődik, az endotheliális károsodás és a koleszterin és más anyagok lerakódásának valószínűsége az edényfal intimájában nő. Ez mechanikai megszakadáshoz vezethet az érfal szerkezetének és a parietális thrombi kialakulásának megkezdéséhez.

A teljes vérkeringés ideje, azaz a vérrészecskék visszatérése a bal kamrába a vérkeringés nagy és kicsi körén belüli kilépése és áthaladása után, a területen 20-25 másodpercig, vagy a szív kamrájából körülbelül 27 szisztolén. Ebből az időből körülbelül egynegyede a kis kör és a háromnegyed - a nagy vérkeringés körének edényein keresztül - a vér mozgására fordul.

A vér áramlik át a pulmonáris keringés artériáin

A vérkeringés a vér folyamatos mozgása zárt szív- és érrendszeren keresztül, amely gázok cseréjét biztosítja a tüdőben és a testszövetekben.

Amellett, hogy a szöveteket és szerveket oxigénnel biztosítják, és eltávolítják a szén-dioxidot, a vérkeringés tápanyagokat, vizet, sókat, vitaminokat, hormonokat szállít a sejtekhez és eltávolítja az anyagcsere végtermékeit, valamint fenntartja a testhőmérséklet állandóságát, biztosítja a humorális szabályozást és a szervek és szervrendszerek összekapcsolását. a test.

A keringési rendszer a szív és a véredényekből áll, amelyek áthatolnak a szervezet összes szervében és szövetében.

A vérkeringés a szövetekben kezdődik, ahol az anyagcsere a kapillárisok falain keresztül történik. A vér, amely az oxigént szerveknek és szöveteknek adta, belép a szív jobb felébe, és a kis (tüdő) keringésbe küldi őket, ahol a vér oxigénnel telített, visszatér a szívbe, belép a bal oldali felébe, és ismét elterjed a testben (a nagy keringésben).

A szív a keringési rendszer fő szerve. Ez egy üreges izmos szerv, amely négy kamrából áll: két atria (jobb és bal), elválasztva egy interatrial septum, és két kamra (jobb és bal), elválasztva egy interventricular septum. A jobb pitvar kommunikál a jobb kamrával a tricuspiden keresztül, a bal pitvar pedig a bal kamrával a kettős szelepen keresztül. A felnőttek átlagos szíve körülbelül 250 g nőknél és körülbelül 330 g férfiaknál. A szív hossza 10–15 cm, a keresztirányú mérete 8–11 cm, az anteroposterior pedig 6-8,5 cm, a férfiak átlagos szívmérete 700–900 cm3, a nőknél –– 500–600 cm3.

A szív külső falát a szívizom alkotja, amely strukturálisan hasonlít az izomzathoz. Azonban a szívizomra jellemző, hogy képes automatikusan ritmikusan megkötni magát a szívében előforduló impulzusok miatt, függetlenül a külső hatásoktól (automatikus szív).

A szív funkciója a vér ritmikus pumpálása az artériákban, amelyek a vénákon keresztül jutnak hozzá. A szív körülbelül 70-75-szer fordul elő percenként a test pihenőállapotában (0,8 másodpercenként 1 alkalommal). Ennek az időnek több mint fele nyugszik - ellazul. A szív folyamatos aktivitása ciklusokból áll, amelyek mindegyike összehúzódás (szisztolés) és relaxáció (diaszole).

A szívműködés három fázisa van:

  • pitvari összehúzódás - pitvari szisztolé - 0,1 s
  • kamrai összehúzódás - kamrai szisztolé - 0,3 s
  • teljes szünet - diasztol (az atriák és a kamrák egyidejű relaxációja) - 0,4 s

Így az átrium teljes ciklusa alatt 0,1 másodpercig és 0,7 másodpercig pihenő, a kamrák 0,3 s és 0,5 másodpercig működnek. Ez megmagyarázza a szívizom azon képességét, hogy fáradhatatlanul dolgozzon az élet során. A szívizom fokozott vérellátása miatt a szívizom nagy teljesítménye. A bal kamra által az aortába felszabaduló vér körülbelül 10% -a belép az ebből nyúló artériákba, amely a szív táplálja.

Az artériák olyan erek, amelyek oxigénellenes vért hordoznak a szívből a szervekbe és a szövetekbe (csak a pulmonalis artéria vénás vért hordoz).

Az artéria falát három réteg képviseli: a külső kötőszövet köpenyét; közeg, amely rugalmas rostokból és sima izmokból áll; belső, kialakult endothelium és kötőszövet.

Emberekben az artériák átmérője 0,4 és 2,5 cm között változik, az artériás rendszerben a teljes vérmennyiség 950 ml. Az artériák fokozatosan fa-szerű ágak lesznek kisebb és kisebb hajókba - arteriolák, amelyek a kapillárisokba jutnak.

Kapillárisok (a latinul. "Capillus" - haj) - a legkisebb hajók (átlagos átmérő nem haladja meg a 0,005 mm-t vagy 5 mikronot), behatolva az állatok és az emberek szerveibe és szövetébe zárt keringési rendszerrel. A kis artériákat - az arteriolákat kis vénákkal - venulákkal kötik össze. Az endotélsejtekből álló kapillárisok falain keresztül gázok és más anyagok cseréje történik a vér és a különböző szövetek között.

A vénák olyan vérerek, amelyek szén-dioxiddal, anyagcsere termékekkel, hormonokkal és más anyagokkal telített vért hordoznak a szövetekből és szervekből a szívbe (kivéve az artériás vért hordozó tüdővénákat). A véna fala sokkal vékonyabb és rugalmasabb, mint az artéria fala. A kis és közepes vénák olyan szelepekkel vannak ellátva, amelyek megakadályozzák a vér visszafolyását ezekben az edényekben. Emberben a vénás rendszerben a vér mennyisége átlagosan 3200 ml.

A vér áthaladását a hajókon először 1628-ban egy angol orvos, V. Harvey írta le.

Harvey William (1578-1657) - angol orvos és természettudós. Létrehozta és gyakorlatba vette az első kísérleti módszert, a kutatást - élőképet.

1628-ban megjelentette az Anatómiai tanulmányok a szív és a vér mozgásáról az állatokban című könyvét, amelyben leírta a vérkeringés nagy és kis körét, megfogalmazta a vérmozgás alapelveit. Ennek a munkának a közzétételének időpontja a fiziológia, mint független tudomány születésének éve.

Emberekben és emlősökben a vér egy zárt szív- és érrendszeren mozog, amely nagy és kis keringésből áll (ábra).

A nagy kör a bal kamrából indul ki, a testben áthalad a vér az aortán keresztül, oxigént ad a kapillárisok szöveteinek, szén-dioxidot vesz, az artériából vénába fordul, és a jobb és a rosszabb vena cava-n keresztül visszatér a jobb pitvarra.

A pulmonalis keringés a jobb kamrából indul ki, a pulmonalis artériában a vér a pulmonális kapillárisokba kerül. Itt a vér szén-dioxidot ad, oxigénnel telített, és a pulmonális vénákon áthalad a bal pitvarban. A bal kamra véréből a bal kamrából a szisztémás keringésbe kerül.

A pulmonáris keringés - a tüdőkör - a vér oxigénnel történő gazdagítására szolgál a tüdőben. A jobb kamrából indul ki, és a bal pitvarral végződik.

A szív jobb kamrájából a vénás vér belép a pulmonális törzsbe (közös pulmonalis artéria), amely hamar két ágra oszlik, és a vér jobbra és balra szállítja.

A tüdőben az artériák kapillárisokká válnak. Kapilláris hálókban, amelyek összefonják a pulmonáris vezikulumokat, a vér szén-dioxidot bocsát ki és cserébe új oxigénellátást (pulmonalis légzést) kap. Az oxigéntartalmú vér scarletré válik, artériássá válik, és a kapillárisokból a vénákba áramlik, amely négy pulmonális vénába (két mindkét oldalon) összevonva a szív bal pitvarába esik. A bal oldali pitvarban a kis (tüdő) keringési kör véget ér, és az átriumba kerülő artériás vér áthalad a bal atrioventrikuláris nyíláson a bal kamrába, ahol a nagy keringés megkezdődik. Következésképpen a vénás vér áramlik a pulmonáris keringés artériáiban, és az artériás vér folyik az ereiben.

A szisztémás keringési kör - szilárd - összegyűjti a vénás vért a test felső és alsó feléből, és hasonlóan elosztja az artériás vért; a bal kamrából indul és a jobb oldali pitvarral végződik.

A szív bal kamrájából a vér belép a legnagyobb artériás edénybe, az aortába. Az artériás vér tápanyagokat és oxigént tartalmaz, amelyek szükségesek a test létfontosságú funkcióihoz, és fényes, vöröses színű.

Az aorta az artériákba megy, amelyek a test minden szervéhez és szövetéhez mennek, és átjutnak az arteriolák vastagságába és tovább a kapillárisokba. A kapillárisokat viszont a vénákban és a vénákban gyűjtöttük össze. A kapilláris falon keresztül folyik a vér és a testszövet közötti anyagcsere és gázcsere. A kapillárisokban áramló artériás vér tápanyagokat és oxigént bocsát ki, és cserébe metabolikus termékeket és szén-dioxidot (szöveti légzést) kap. Ennek eredményeképpen a vénás ágyba bejutó vér oxigénben és szén-dioxidban gazdag, ezért sötét színű - vénás vér; vérzés esetén vér színével meghatározható, hogy az artéria vagy a véna sérült-e. A vénák két nagy törzsbe egyesülnek - a felső és alsó üreges vénákba, amelyek a szív jobb pitvarába esnek. A szívnek ez a része a vérkeringés nagy (test) körével végződik.

Az artériás vér áramlik az artériákon a nagy keringésben, és a vénás vér áramlik át a vénákon.

Egy kis körben, ellenkezőleg, a vénás vér áramlik a szívből az artériákon keresztül, és az artériás vér visszatér az ereiben.

A harmadik kör (szív) kör a vérkeringést szolgálja, amely magában foglalja a szívét. Ez a szív koszorúér-artériáival kezdődik, amely az aortából indul ki és a szív vénáival végződik. Az utóbbiak beleegyeznek a szívkoszorúérbe, amely a jobb pitvarba áramlik, míg a fennmaradó vénák közvetlenül a pitvari üregbe nyílnak.

A vér áthaladása az edényeken

Bármely folyadék áramlik, ahol a nyomás magasabb, ahol alacsonyabb. Minél nagyobb a nyomáskülönbség, annál nagyobb az áramlási sebesség. A vérkeringés nagy és kis körének vérében lévő vér a nyomáskülönbség miatt is mozog, amit a szív összehúzódása okoz.

A bal kamrában és az aortában a vérnyomás magasabb, mint az üreges vénákban (negatív nyomás) és a jobb pitvarban. A nyomáskülönbség ezeken a területeken biztosítja a vér mozgását a szisztémás keringésben. Magas nyomás a jobb kamrában és a pulmonalis artériában, alacsony a pulmonális vénákban és a bal pitvarban a vér mozgása a pulmonáris keringésben.

A legnagyobb nyomás az aortában és a nagy artériákban (vérnyomás). Az artériás vérnyomás nem állandó [show]

A vérnyomás az a vérnyomás, amely a szív vérének és a kamráknak a falán van, ami a szív összehúzódásából ered, ami a vért az érrendszerbe fecskendezi, és az érrendszeri ellenállást. A keringési rendszer állapotának legfontosabb orvosi és fiziológiai mutatója az aorta és a nagy artériák nyomása - vérnyomás.

Az artériás vérnyomás nem állandó. Nyugodt egészséges embereknél, a maximális vagy a szisztolés vérnyomást különböztetjük meg - az artériákban a nyomásszint a szív-szisztolénál kb. Ie az artériás vérnyomás impulzusok a szív összehúzódásával időben: a szisztolés idején 120-130 mm Hg-ra emelkedik. A cikk és a diaszol alatt 80-90 mm Hg-ra csökken. Art. Ezek az impulzusnyomás-ingadozások az artériás fal impulzus-oszcillációival egyidejűleg fordulnak elő.

Impulzus - az artériás falak periodikus rángatózó bõvülése, szinkronban a szív összehúzódásával. Az impulzus meghatározza a percenkénti szívverések számát. Egy felnőttnél az impulzusszám átlagosan 70-80 ütés / perc. Edzés közben az impulzus mértéke akár 150-200 ütemben is növekedhet. Olyan helyeken, ahol az artériák a csonton helyezkednek el, és közvetlenül a bőr alatt fekszenek (sugárzás, időbeli), az impulzus könnyen érthető. Az impulzushullám terjedési sebessége körülbelül 10 m / s.

A vérnyomás mértékét befolyásolja:

  1. a szív munka és a szívverés ereje;
  2. az edények lumenének mérete és faluk hangja;
  3. az edényekben keringő vér mennyisége;
  4. vér viszkozitása.

Az emberben a vérnyomást a brachialis artériában mérik, összehasonlítva a légköri értékkel. Ehhez viseljen gumi mandzsettát a vállon, csatlakoztatva a nyomásmérőhöz. A levegőt a mandzsettába pumpálják, amíg a csuklón lévő pulzus eltűnik. Ez azt jelenti, hogy a brachialis artéria nagy nyomással összenyomódik, és a vér nem folyik át rajta. Ezután fokozatosan engedje el a levegőt a mandzsettából, figyelje az impulzus megjelenését. Ezen a ponton az artériákban a nyomás kissé magasabb lesz, mint a mandzsetta és a vér nyomása, és ezzel együtt az impulzushullám eléri a csuklót. A manométer-értékek ebben az időben is jellemzik a vérnyomást a brachialis artériában.

Hipertóniának nevezzük a fenti adatoknak a szervezetben fennmaradó vérnyomásának tartós növekedését, és csökkenése a hypotonia.

A vérnyomás szintjét ideges és humorális tényezők szabályozzák (lásd a táblázatot).

A vérmozgás sebessége nem csak a nyomáskülönbségtől függ, hanem a véráram szélességétől is. Bár az aorta a legszélesebb hajó, egyedül van a testben, és az összes vér átfolyik rajta, amit a bal kamra tolja ki. Ezért itt a maximális sebesség 500 mm / s (lásd az 1. táblázatot). Ahogy az artériák elágazódnak, az átmérőjük csökken, de az összes artéria teljes keresztmetszeti területe nő, és a vér sebessége csökken, elérve a kapillárisokban 0,5 mm / s-ot. A kapillárisok ilyen alacsony véráramlása miatt a vér képes oxigént és tápanyagokat adni a szövetekbe, és elviszi a létfontosságú tevékenység termékeit.

A kapillárisokban a véráramlás lassulását nagyszámú (kb. 40 milliárd) és nagy teljes lumen (800-szorosa az aorta lumenének) magyarázza. A vér mozgása a kapillárisokban a tápláló kis artériák lumenében bekövetkező változásoknak köszönhető: terjeszkedésük fokozza a kapillárisok véráramlását, és a szűkítés csökken.

A kapillárisok útjától érkező vénák kibővülnek a szívhez, egyesülnek, számuk és a véráram teljes lumenje csökken, és a vérmozgás sebessége növekszik a kapillárisokhoz képest. A lapról. Az 1. ábra azt is mutatja, hogy az összes vér 3/4-a vénákban van. Ennek oka, hogy a vénák vékony falai könnyen nyúlhatnak, így sokkal több vért tartalmazhatnak, mint a megfelelő artériák.

A vénákon a vér mozgásának fő oka a vénás rendszer elején és végén a nyomáskülönbség, így a vénákon áthaladó vér mozgása a szív irányába történik. Ezt megkönnyíti a mellkasi szívóhatása (a "légzőszivattyú") és a vázizmok összehúzódása ("izomszivattyú"). A mellkasi belégzési nyomás alatt csökken. A vénás rendszer elején és végén a nyomáskülönbség megnő, és a vénákon áthaladó vér a szívbe kerül. A csontrendszeri izmok, a szerződéskötés, az erek összenyomása, ami szintén hozzájárul a vér szívhez való mozgásához.

A vérmozgás sebessége, a véráram szélessége és a vérnyomás közötti összefüggést az 1. ábra szemlélteti. 3. Az időegységenként az edényeken átáramló vér mennyisége megegyezik az edények keresztmetszete által mozgó vér sebességével. Ez az érték megegyezik a keringési rendszer minden részén: mennyi vér a szívbe az aortába, mennyi folyik az artériákon, a kapillárisokon és a vénákon, és amennyire visszatér a szívbe, és egyenlő a percnyi térfogattal.

A vér a szervezetben történő újraelosztása

Ha az aortától az egyes szervekig terjedő artéria kiterjed a sima izmainak relaxációja miatt, a szerv több vért kap. Ugyanakkor a kevesebb vér miatt más szervek is kapnak. Ez a vér a szervezetben való újraelosztása. Az újraelosztás eredményeképpen több vér áramlik a működő szervekbe a jelenleg pihenő szervek kárára.

A vér újraelosztását az idegrendszer szabályozza: egyidejűleg a munkaképző szervekben a vérerek terjeszkedésével párhuzamosan csökken az inaktív véredények, és a vérnyomás változatlan marad. De ha az összes artéria kiterjed, ez a vérnyomás csökkenéséhez és a vér sebességének csökkenéséhez vezet.

A vérkeringési idő

A vérkeringési idő az az idő, amely ahhoz szükséges, hogy a vér áthaladjon a teljes keringésben. Számos módszert alkalmaznak a vérkeringési idő mérésére [show]

A vérkeringés időmérésének elve az, hogy egy anyagot vénába vezetnek be, amelyet általában nem találunk a testben, és azt követően határozzuk meg, hogy az adott idő alatt milyen jelenség jelenik meg az azonos nevű másik oldal vénájában, vagy annak jellegzetes hatását okozza. Például az agyi vénába befecskendezzük a laktelin lúgos oldatát, amely a vér agyi belsejében hat, és az anyag beadásának pillanattól a pillanatig, amikor a rövid légzés vagy köhögés megjelenik. Ez akkor fordul elő, ha a Lobeline molekulái, amelyek a keringési rendszerben áramkört hoztak létre, a légzőrendszerre hatnak, és légzési vagy köhögésváltozást okoznak.

Az utóbbi években a vérkeringés sebességét a vérkeringés mindkét körében (vagy csak egy kis körben, vagy csak egy nagy körben) a nátrium és az elektronszámláló radioaktív izotópja határozza meg. Ehhez több ilyen számlálót a test különböző részeihez, nagy edények közelében és a szív régiójában helyeznek el. A nátrium radioaktív izotópjának az ulnar vénába történő bevezetése után meghatároztuk a radioaktív sugárzás megjelenésének idejét a szív régiójában és a vizsgált edényekben.

Az emberekben a vérkeringés ideje átlagosan a szív 27 szisztoléja. 70-80 percenkénti összehúzódás esetén a teljes vérkeringés körülbelül 20-23 másodperc alatt történik. Nem szabad azonban elfelejtenünk, hogy a vér áramlási sebessége a hajó tengelye mentén nagyobb, mint a falaké, és hogy nem minden érrendszer azonos hosszúságú. Ezért nem minden vér teszi az áramkört olyan gyorsan, és a fent jelzett idő a legrövidebb.

Kutyákkal végzett vizsgálatok azt mutatták, hogy a teljes vérkeringés idejének 1/5-a a pelletben a pulmonáris keringéshez és a 4/5-hez esik.

A szív megőrzése. A szív, mint más belső szervek is, az autonóm idegrendszer által beidegzik, és kettős beidegződést kap. A szív szimpatikus idegek, amelyek erősítik és felgyorsítják annak csökkentését. Az idegek második csoportja - paraszimpatikus - ellentétes módon hat a szívre: lassítja és gyengíti a szívverést. Ezek az idegek szabályozzák a szív munkáját.

Ezen túlmenően a szív a mellékvese - az adrenalin, amely a vérrel a szívbe kerül, és fokozza annak összehúzódását. A szervek munkájának szabályozása a vér által hordozott anyagok segítségével úgynevezett humorális.

A szív idegrendszeri és humorális szabályozása a szervezetben együttesen működik, és a szív- és érrendszer pontos alkalmazkodását biztosítja a test és a környezeti feltételek igényeihez.

A véredények megőrzése. A véredényeket szimpatikus idegek inerválják. Az általuk elterjedt izgalom a simaizomok összehúzódását okozza a véredények falában, és megszorítja az ereket. Ha elvágja a test egy bizonyos részébe érkező szimpatikus idegeket, a megfelelő edények bővülnek. Következésképpen a véredények szimpatikus idegrendszerén keresztül az izgalom jön létre, amely ezeket az edényeket bizonyos szűkülő - érrendszeri állapotban tartja. Amikor az izgalom növekszik, az idegimpulzusok gyakorisága növekszik, és az erek erőteljesebben szűkülnek - a vaszkuláris tónus növekszik. Éppen ellenkezőleg, a szimpatikus neuronok gátlása következtében az idegimpulzusok gyakoriságának csökkenésével csökken a vaszkuláris tónus és a vérerek tágulnak. Bizonyos szervek (csontvázak, nyálmirigyek) edényei a vasokonstriktor mellett a vasodilatáló idegeket is alkalmazzák. Ezek az idegek izgatottak, és munkájuk során meghosszabbítják a szervek véredényeit. A vérlumenet az erek is befolyásolják. Az adrenalin szűkíti az ereket. Egy másik anyag - acetil-kolin -, amelyet egyes idegek végei választanak ki, kibővítik őket.

A szív-érrendszer szabályozása. A szervek vérellátása szükségleteiknek megfelelően változik a leírt véreloszlásnak köszönhetően. Ez az újraelosztás azonban csak akkor hatékony, ha az artériákban a nyomás nem változik. A vérkeringés idegrendszerének egyik fő funkciója az állandó vérnyomás fenntartása. Ezt a funkciót reflexív módon hajtjuk végre.

Az aorta és az carotis artériák falában olyan receptorok vannak, amelyek irritálódnak, ha a vérnyomás meghaladja a normális szintet. Ezeknek a receptoroknak a gerjesztése a medulában található vasomotor központba megy, és gátolja annak működését. A szimpatikus idegek közepétől az edényekig a szív elkezd gyengébb gerjesztést kapni, mint korábban, és a véredények tágulnak, és a szív gyengíti a munkáját. Ezen változások miatt a vérnyomás csökken. És ha valamilyen oknál fogva a nyomás a normál alá csökken, a receptor irritációja teljesen leáll, és a hajó-motor központ, amely nem kap gátló hatást a receptoroktól, erősíti tevékenységét: több másodpercenkénti idegimpulzust küld a szívre és az edényekre, a hajók szűkek, a szív szerződések, gyakrabban és erősebb vérnyomás emelkedik.

Szívhigiénia

Az emberi test normális aktivitása csak akkor lehetséges, ha jól fejlett kardiovaszkuláris rendszer van. A véráramlás sebessége meghatározza a szervek és szövetek vérellátásának mértékét és a hulladéktermékek eltávolításának sebességét. A fizikai munka során az oxigén szervek szükségessége a szívfrekvencia növekedésével és növekedésével párhuzamosan nő. Ez a munka csak erős szívizmust biztosít. A sokféle munkához való rugalmasság érdekében fontos a szív képzése, az izmok erősségének növelése.

A fizikai munka, a testnevelés fejleszti a szívizomot. A kardiovaszkuláris rendszer normális működésének biztosítása érdekében a személynek reggelizéssel kell kezdenie a napját, különösen azokat, akiknek a szakmái nem kapcsolódnak a fizikai munkához. A vér oxigénnel való gazdagítása érdekében a testmozgást a szabadban szabad végezni.

Emlékeztetni kell arra, hogy a túlzott fizikai és mentális stressz megzavarhatja a szív és a betegségek normális működését. A szív- és érrendszerre különösen káros hatások az alkohol, a nikotin, a gyógyszerek. Az alkohol és a nikotin mérgezi a szívizom és az idegrendszert, ami drámai dysregulációt okoz az érrendszer és a szív aktivitásában. Ezek a kardiovaszkuláris rendszer súlyos betegségeinek kialakulásához vezetnek, és hirtelen halált okozhatnak. A többieknél gyakrabban dohányzó és alkoholt fogyasztó fiatalok szívelégtelensége súlyos szívrohamot okoz, és néha halál.

Elsősegély a sérülésekhez és vérzéshez

A sérülések gyakran vérzéssel járnak. Kapilláris, vénás és artériás vérzés van.

A kapilláris vérzése kisebb sérülések esetén is előfordul, és a vér lassú áramlása következik be a sebből. Ezt a sebet ragyogó zöld (ragyogó zöld) oldattal kell fertőtleníteni, és tiszta gézkötést kell alkalmazni. A kötés megállítja a vérzést, elősegíti a vérrög kialakulását, és nem teszi lehetővé a mikrobák bejutását a sebbe.

A vénás vérzést jelentősen magasabb véráramlás jellemzi. Az áramló vér sötét színű. A vérzés leállításához szoros kötést kell alkalmazni a seb alatt, azaz a szívtől távolabb. A vérzés leállítása után a sebet fertőtlenítőszerrel (3% -os hidrogén-peroxid-oldat, vodka) kezeljük, steril nyomáskötéssel kötjük össze.

Az artériás vérzés a sebből vörösvért vont. Ez a legveszélyesebb vérzés. Ha a végtagvér sérült, akkor a lehető legmagasabbra kell emelni a végtagot, hajlítsa meg és nyomja meg a sérült artériát az ujjával azon a helyen, ahol közel van a testfelülethez. Szükség van a sérülés helyén is, azaz a szívhez közelebb, helyezzen egy gumiszalagot (használhat kötést, egy kötelet erre), és szorosan húzza meg, hogy teljesen leállítsa a vérzést. A tornyot 2 óránál hosszabb ideig nem lehet meghúzni, a felhordáskor fel kell venni egy megjegyzést, amelyben fel kell tüntetni a vontatókötél alkalmazási idejét.

Emlékeztetni kell arra, hogy a vénás, és még inkább az artériás vérzés jelentős vérveszteséghez és akár halálhoz is vezethet. Ezért ha sérült, a vérzést a lehető leghamarabb le kell állítani, majd az áldozatot a kórházba kell szállítani. Súlyos fájdalom vagy félelem okozhat egy személyt az eszméletvesztésnek. Az eszméletvesztés (ájulás) a vasomotor központ gátlása, a vérnyomás csökkenése és az agy elégtelen vérellátása eredménye. Egy eszméletlen embernek szokatlan szagot kell adnia egy erősen szagú (például ammónia), nem mérgező anyagból, hideg vízzel megnedvesítenie az arcát, vagy enyhén patinálnia az arcára. Amikor a szagló- vagy bőrreceptorok irritálódnak, a gerjesztés belép az agyba, és eltávolítja a vasomotoros centrum gátlását. A vérnyomás emelkedik, az agy megfelelő táplálkozást és tudat visszatér.