logo

A vérkeringés körének szerkezete és értéke

A kardiovaszkuláris rendszer bármely élő szervezet fontos eleme. A vér szállítja az oxigént, a különböző tápanyagokat és hormonokat a szövetekbe, és ezeknek az anyagoknak az anyagcsere termékeit a kiválasztás szerveibe vihet át, hogy eltávolítsák és semlegesítsék őket. A tüdőben oxigénnel gazdagodik, az emésztőrendszer szerveiben tápanyagokat tartalmaz. A májban és a vesében a metabolikus termékek kiválasztódnak és semlegesíthetők. Ezeket a folyamatokat állandó vérkeringéssel hajtják végre, ami a vérkeringés nagy és kis körén keresztül történik.

A keringési rendszer megnyitására tett kísérletek különböző évszázadok óta voltak, de valóban megértették a keringési rendszer lényegét, kinyitották a köröket és leírta szerkezetük szerkezetét, az angol orvos William Garvey-t. Kísérletezésével először bizonyította, hogy az állat testében a szív összehúzódása által létrehozott nyomás miatt ugyanolyan mennyiségű vér folyamatosan zárt körben mozog. 1628-ban Harvey kiadta a könyvet. Ebben vázolta a vérkeringési körökre vonatkozó tanításait, megteremtve az előfeltételeket a szív-érrendszer anatómiájának további alapos tanulmányozásához.

Újszülötteknél a vér kering mindkét körben, de eddig a magzat a méhben volt, keringése saját jellegzetességekkel rendelkezik, és placentának nevezték. Ez annak a ténynek köszönhető, hogy a méh magzatának fejlődése során a magzat légzési és emésztőrendszerei nem működnek teljesen, és az anyától megkapja az összes szükséges anyagot.

A vérkeringés fő összetevője a szív. A vérkeringés nagyméretű és kis körzetei az általa távozó hajókból származnak, és zárt köröket alkotnak. Ezek különböző szerkezetű és átmérőjű edényekből állnak.

A véredények függvényében rendszerint a következő csoportokba sorolhatók:

  1. 1. Szív. A vérkeringés mindkét körét elindítják és végzik. Ezek közé tartozik a pulmonális törzs, az aorta, az üreges és a tüdővénák.
  2. 2. Trunk. Az egész testben elosztják a vért. Ezek nagy és közepes méretű szervetlen artériák és vénák.
  3. 3. Szervek. Segítségükkel biztosítják a vér és a testszövetek közötti anyagcserét. E csoportba tartoznak az intraorganikus vénák és az artériák, valamint a mikrocirkulációs kapcsolat (arteriolák, venulák, kapillárisok).

Úgy működik, hogy a tüdőben előforduló oxigénnel telítse a vért. Ezért ezt a kört is tüdőnek nevezik. A jobb kamrában kezdődik, amelybe az összes vénás vér belép a jobb pitvarba.

A kezdet a tüdő törzs, amely a tüdő felé közeledve elágazik a jobb és bal tüdő artériákba. Vénás vért hordoznak a tüdő alveoláira, amelyek a szén-dioxid feladását és az oxigén visszaszolgáltatását követően artériássá válnak. Az oxigénes vér a tüdővénákon keresztül (két mindkét oldalon) belép a bal átriumba, ahol a kis kör véget ér. Ezután a vér a bal kamrába áramlik, ahonnan a vérkeringés nagy köre származik.

Az emberi test legnagyobb hajójának bal kamrájából származik - az aortából. Arteriális vért hordoz, amely tartalmazza az élethez és az oxigénhez szükséges anyagokat. Az aorta az artériákba vonul, elérve az összes szövetet és szervet, amely ezt követően áthalad az arteriolákba, majd a kapillárisokba. Az utóbbi falán keresztül a szövetek és edények között anyagcsere és gázok képződnek.

A metabolikus termékeket és a szén-dioxidot kapva a vér vénássá válik, és a vénákban és a vénákban gyűlik össze. Minden vénák két nagy edénybe egyesülnek - az alsó és felső üreges vénákba, amelyek ezután a jobb pitvarba áramolnak.

A vérkeringést a szív összehúzódása, a szelepek kombinált munkája és a szervek tartályaiban lévő nyomásgradiens miatt végzik. Ezzel beállítható a testben a vérmozgás szükséges sorrendje.

A vérkeringési körök hatása miatt a test továbbra is fennáll. A folyamatos vérkeringés elengedhetetlen az élethez, és a következő funkciókat látja el:

  • gáz (oxigén szállítása a szervekre és szövetekre, és a szén-dioxid eltávolítása tőlük a vénás ágyon);
  • tápanyagok és műanyag anyagok szállítása (az artériás ágy mentén szállítva a szövetekre);
  • a metabolitok (feldolgozott anyagok) szállítása a kitermelésbe;
  • hormonok szállítása a termelés helyéről a célszervekbe;
  • hőenergia-keringés;
  • védőanyagok szállítása a kereslet helyére (a gyulladás helyére és más patológiai folyamatokra).

A szív- és érrendszer minden részének összehangolt munkája, melynek következtében folyamatos véráramlás van a szív és a szervek között, lehetővé teszi az anyagok cseréjét a külső környezettel és a belső környezet hosszú távú fenntartását a test teljes működéséhez.

Nagy és kis körök a vérkeringésben

Nagy és kis körök az emberi vérkeringésben

A vérkeringés a vér mozgása az érrendszeren keresztül, amely biztosítja a gázcserét a szervezet és a külső környezet között, a szervek és szövetek közötti anyagcserét, valamint a szervezet különböző funkcióinak humorális szabályozását.

A keringési rendszer magában foglalja a szív és a vérerek - az aorta, az artériák, az arteriolák, a kapillárisok, a vénák, a vénák és a nyirokerek. A vér a szívizom összehúzódása miatt áthalad az edényeken.

A forgalom zárt rendszerben történik, amely kis és nagy körökből áll:

  • A vérkeringés nagy köre minden szervet és szövetet tartalmaz a vérben és a tápanyagokban.
  • Kis vagy tüdő vérkeringés célja, hogy a vér oxigénnel gazdagítsa.

A vérkeringési köröket először William Garvey angol tudós írta le 1628-ban az Anatómiai vizsgálatok a szív és a hajók mozgásáról című munkájában.

A pulmonalis keringés a jobb kamrából indul ki, csökkentésével a vénás vér a tüdőtörzsbe kerül, és a tüdőn keresztül áramlik ki szén-dioxidot és oxigénnel telít. Az oxigénnel dúsított vér a tüdőből áthalad a tüdővénákon a bal pitvarban, ahol a kis kör véget ér.

A szisztémás keringés a bal kamrából indul ki, ami csökkentve oxigénnel gazdagodik, az összes szerv és szövet aortájába, artériáiba, arterioláiba és kapillárisaiba szivattyúzódik, és onnan a vénákon és a vénákon keresztül áramlik a jobbra, ahol a nagy kör véget ér.

A vérkeringés nagy körének legnagyobb hajója az aorta, amely a szív bal kamrájából terjed ki. Az aorta egy ívet képez, amelyből az artériák elágazódnak, vért hordoznak a fejre (carotis artériák) és a felső végtagokra (vertebralis artériák). Az aorta leereszkedik a gerinc mentén, ahol az ágak elhúzódnak, vért szállítanak a hasi szervekbe, a törzs és az alsó végtag izmaiba.

Az artériás vér, oxigénben gazdag, áthalad az egész testen, a szervek és szövetek sejtjeihez szükséges tápanyagokat és oxigént szállít, és a kapilláris rendszerben vénás vérré válik. A szén-dioxiddal és a celluláris anyagcsere termékekkel telített vénás vér visszatér a szívbe, és belép a tüdőbe a gázcsere céljából. A vérkeringés nagy körének legnagyobb vénái a felső és alsó üreges vénák, amelyek a jobb pitvarba áramolnak.

Ábra. A kis és nagy körök vérkeringési rendszere

Meg kell jegyezni, hogy a máj és a vese keringési rendszerei szerepelnek a szisztémás keringésben. A gyomor, a belek, a hasnyálmirigy és a lép kapillárisaiból és vénáiból származó minden vér belép a portálvénába, és áthalad a májon. A májban a portális vénák kis vénákba és kapillárisokba kerülnek, amelyeket ezután újra összekapcsolnak a máj vénájának közös törzsével, amely az alsó vena cava-ba áramlik. A hasi szervek összes vérét a szisztémás keringésbe való belépés előtt két kapilláris hálózaton keresztül áramlik: ezeknek a szerveknek a kapillárisai és a máj kapillárisai. A máj portálrendszere nagy szerepet játszik. Biztosítja a vastagbélben kialakuló mérgező anyagok semlegesítését azáltal, hogy a vékonybélben az aminosavakat szétválasztják, és a vastagbél nyálkahártyája a vérbe szívódik fel. A máj, mint minden más szerv is, artériás vért kap a máj artériáján keresztül, amely a hasi artériából terjed.

A vese két kapilláris hálózata is van: mindegyik malpighus glomerulusban van egy kapilláris hálózat, majd ezek a kapillárisok egy artériás edénybe csatlakoznak, amely ismét kapillárisokká bomlik, csavart csöves csövek.

Ábra. A vér keringése

A májban és a vesében a vérkeringés egyik jellemzője a véráramlás lassulása a szervek működéséből adódóan.

1. táblázat: A véráramlás különbsége a vérkeringés nagy és kis körében

Véráramlás a szervezetben

Nagy vérkeringési kör

A keringési rendszer

A szív melyik részén kezdődik a kör?

A bal kamrában

A jobb kamrában

A szív melyik részében végződik a kör?

A jobb oldalon

A bal pitvarban

Hol történik a gázcsere?

A mellkasi és hasi üregek szervében található kapillárisok, agy, felső és alsó végtagok

A kapillárisokban a tüdő alveoláiban

Milyen vér mozog az artériákon?

Milyen vér mozog a vénákon?

A vér egy körbe mozgatása

A szervek és szövetek oxigénnel való ellátása és a szén-dioxid átadása

A vér oxigenizációja és a szén-dioxid eltávolítása a szervezetből

A vérkeringés ideje a vérrészecskék egyetlen áthaladásának ideje az érrendszer nagy és kis körzetein keresztül. További részletek a cikk következő részében.

A véredények mintái az edényeken keresztül

A hemodinamika alapelvei

A hemodinamika olyan fiziológiai rész, amely a vér áthaladásának mintáit és mechanizmusait vizsgálja az emberi test edényein keresztül. A tanulmányozás során a terminológiát használják, és figyelembe veszik a hidrodinamika törvényeit, a folyadékok mozgásának tudományát.

A vér mozgásának sebessége, de az edényekre két tényezőtől függ:

  • a vérnyomás különbségéből az edény elején és végén;
  • az ellenállástól, amely megfelel a folyadéknak az útjában.

A nyomáskülönbség hozzájárul a folyadék mozgásához: minél nagyobb, annál intenzívebb ez a mozgás. Az érrendszer rezisztenciája, amely csökkenti a vérmozgás sebességét, számos tényezőtől függ:

  • a hajó hossza és sugara (minél nagyobb a hossza és minél kisebb a sugár, annál nagyobb az ellenállás);
  • a vér viszkozitása (ez a víz viszkozitásának ötszöröse);
  • a véredények súrlódása a véredények falain és egymás között.

Hemodinamikai paraméterek

A véráramlás sebességét a véredényekben a hemodinamika törvényei szerint végezzük, a hidrodinamika törvényeihez hasonlóan. A véráramlás sebességét három mutató jellemzi: a térfogatáram sebességét, a lineáris véráramlási sebességet és a vérkeringés idejét.

A véráram volumetrikus aránya az adott kaliberű tartály minden egyes tartályának keresztmetszetén átáramló vér mennyisége.

A véráramlás lineáris sebessége - az egyes vérrészek mozgási sebessége a hajónként az időegységenként. Az edény közepén a lineáris sebesség maximális, és az edényfal közelében a megnövekedett súrlódás miatt minimális.

A vérkeringés ideje az az idő, amely alatt a vér áthalad a nagy és kis vérkeringési körökön, általában 17-25 másodperc. Körülbelül 1/5-ös kört töltenek egy kis körön át, és ennek az időnek a 4/5-ét egy nagy áthaladásra fordítják.

A véráramlás hajtóereje az egyes vérkeringési körök érrendszerében a vérnyomás különbsége (ΔP) az artériás ágy kezdeti részén (a nagy kör aorta) és a vénás ágy utolsó része (üreges vénák és jobb oldali pitvar). A vérnyomás különbsége (ΔP) az edény elején (P1) és annak végén (P2) a véráramlás hajtóereje a keringési rendszer bármely edényén. A vérnyomás-gradiens erőt alkalmazzuk az érrendszerben és az egyes edényekben a véráramlással szembeni ellenállás leküzdésére. Minél nagyobb a vérnyomás-gradiens a vérkeringés körében vagy egy külön edényben, annál nagyobb a vér mennyisége.

A vér áthaladásának legfontosabb mutatója a véráramlás volumetrikus sebessége, vagy a térfogati véráramlás (Q), amellyel megértjük az érfogat teljes keresztmetszetén áthaladó vér térfogatát, vagy az egyes edények átmérőjét időegységenként. A térfogat véráramlási sebességét literben / percben (l / perc) vagy milliliterben percben (ml / perc) fejezzük ki. A térfogatrendszeri véráramlás fogalmát az aorta vagy a szisztémás keringő véredények bármely más szintjének teljes keresztmetszetének a térfogati véráramlásának értékelésére használjuk. Mivel az időegységenként (percben) a bal kamra által kibocsátott teljes vérmennyiség az idő folyamán áthalad a vérkeringés nagy körének aortáján és más edényein, a minuscule blood volume (IOC) kifejezés a szisztémás véráramlás fogalmának szinonimája. Egy felnőtt pihenőhelye 4–5 l / perc.

A testben volumetrikus véráramlás is van. Ebben az esetben a test összes artériás vénás vagy kimenő vénás vénájából az időegységenként áramló teljes véráramlást kell érteni.

Így a térfogati véráram Q = (P1 - P2) / R.

Ez a képlet a hemodinamika alapjogának lényegét fejezi ki, amely kimondja, hogy az érrendszer teljes keresztmetszetén vagy az egyedülálló edényen az időegységenként áramló vér mennyisége közvetlenül arányos a vérnyomás különbségével az érrendszer (vagy az edény) elején és végén, és fordítottan arányos a jelenlegi ellenállással. vér.

A teljes (szisztémás) perc véráramlást egy nagy körben úgy számítják ki, hogy figyelembe veszik az átlagos vérnyomást az aorta P1 elején és az üreges vénák P2 szájánál. Mivel a vénák ebben a részében a vérnyomás közel van a 0-hoz, akkor a P értéke, amely az aorta kezdetén az átlagos hidrodinamikai artériás vérnyomással egyenlő, a Q vagy IOC számításánál helyettesíthető: Q (IOC) = P / R.

A hemodinamika alaptörvényének egyik következménye - a véráramlás hajtóereje az érrendszerben - a szív munkája által létrehozott vér nyomásának köszönhető. A vérnyomás értékének meghatározó jelentőségének megerősítése a véráramlásra a véráram pulzáló jellege a szívciklus során. A szív-szisztolés során, amikor a vérnyomás eléri a maximális szintet, a véráramlás nő, és a diasztolé alatt, amikor a vérnyomás minimális, a véráramlás gyengül.

Mivel a vér áthalad az edényeken az aortából az erekbe, a vérnyomás csökken, és csökkenése arányos a véráramlással szembeni ellenállással. Különösen gyorsan csökkenti az arteriolák és a kapillárisok nyomását, mivel nagy ellenállással rendelkeznek a véráramlással szemben, kis sugarú, nagy teljes hosszukkal és számos ággal, ami további akadályt jelent a véráramlás számára.

A vérkeringés nagy körének vaszkuláris ágyában kialakult vérárammal szembeni rezisztenciát általános perifériás ellenállásnak (OPS) nevezik. Ezért a térfogatáram kiszámításának képletében az R szimbólum helyettesíthető az analóg - OPS:

Q = P / OPS.

Ebből a kifejezésből számos fontos következmény következik, amelyek szükségesek ahhoz, hogy megértsük a szervezetben a vérkeringési folyamatokat, értékeljük a vérnyomás mérését és eltéréseit. A hajó ellenállását befolyásoló tényezőket, a folyadék áramlását a Poiseuille-törvény írja le, amely szerint

ahol R ellenállás; L a hajó hossza; η - vér viszkozitása; Π - 3.14. Szám; r a hajó sugara.

A fenti kifejezésből az következik, hogy mivel a 8 és Π számok állandóak, a felnőtteknél L nem változik sokat, a perifériás véráramlással szembeni rezisztencia mennyiségét a hajó sugárának r és a viszkozitás η változó értékei határozzák meg.

Már említettük, hogy az izomtípusú hajók sugara gyorsan változhat és jelentős hatást gyakorolhat a véráramlással szembeni ellenállásra (így a nevük rezisztív edények) és a véráramlás mennyisége a szerveken és szöveteken keresztül. Mivel az ellenállás a sugárnak a 4. fokhoz viszonyított nagyságától függ, még a hajók sugárának kis ingadozása is erősen befolyásolja a véráramlással szembeni ellenállás értékeit. Tehát például, ha a hajó sugara 2 mm-ről 1 mm-re csökken, az ellenállása 16-szor növekszik, és állandó nyomás-gradiens esetén a véráramlás ebben az edényben is 16-szor csökken. Az ellenállás fordított változásait az edény sugara 2-szeres emelkedésével figyeli meg. Állandó átlagos hemodinamikai nyomás esetén az egyik szervben a véráramlás a másikban csökkenhet, attól függően, hogy az arteriális erek és a vénák simaizomjai összehúzódnak-e vagy lazulnak.

A vér viszkozitása az eritrociták (hematokrit), fehérje, plazma lipoproteinek és a vér aggregálódásának állapotától függ. Normál körülmények között a vér viszkozitása nem változik olyan gyorsan, mint az edények lumenje. A vérveszteség, az eritropenia, a hipoproteinémia után a vér viszkozitása csökken. Jelentős eritrocitózis, leukémia, fokozott eritrocita aggregáció és hiperkoaguláció esetén a vér viszkozitása jelentősen megnőhet, ami a véráramlás fokozott ellenállásához, a myocardium megnövekedett terheléséhez és a mikrovaszkuláris edényekben a véráramlás csökkenéséhez vezethet.

Egy jól megalapozott vérkeringési módban a bal kamra által kioltott és az aorta keresztmetszetén átáramló vér térfogata megegyezik a vérkeringés nagy körének bármely más részének a teljes keresztmetszetében áthaladó vér térfogatával. Ez a vérmennyiség visszatér a jobb pitvarra, és belép a jobb kamrába. Ettől kezdve a vér a pulmonáris keringésbe kerül, majd a tüdővénákon keresztül visszatér a bal szívbe. Mivel a bal és jobb kamrai IOC azonos, és a vérkeringés nagy és kis körei sorba vannak kapcsolva, az érrendszerben a véráram volumetrikus aránya változatlan marad.

A véráramlási viszonyok változásai során például, ha vízszintes helyzetből függőleges helyzetbe megyünk, amikor a gravitáció az alsó felsőtest és a lábak vénáiban átmenetileg felhalmozódik a vér, a bal és jobb kamra IOC rövid időre eltérő lehet. Hamarosan a szív működését szabályozó intracardiac és extracardiac mechanizmusok összehangolják a véráramlást a kis és nagy vérkeringési körökön.

A vér vénás visszatérésének a szívbe történő visszaesése, ami a stroke térfogatának csökkenését okozza, a vér vérnyomása csökkenhet. Ha jelentősen csökken, az agyba történő véráramlás csökkenhet. Ez magyarázza a szédülés érzését, amely egy személy hirtelen átmenetétől függőleges helyzetbe kerülhet.

A véráramok térfogata és lineáris sebessége az edényekben

Az érrendszerben a teljes vérmennyiség fontos homeosztatikus indikátor. A nők átlagos értéke 6-7%, a férfiak 7-8% -a, és 4-6 liter között van; Az ebből a térfogatból származó vér 80-85% -a a vérkeringés nagy körének edényeiben van, mintegy 10% -a a vérkeringés kis körének edényeiben, és körülbelül 7% a szívüregben.

A vér nagy része a vénákban van (kb. 75%) - ez jelzi a vérkeringésben betöltött vérben betöltött szerepét.

A vér mozgását az edényekben nemcsak térfogat, hanem lineáris véráramlás sebesség jellemzi. Alatta megérti azt a távolságot, amelyet egy darab vér időegységenként mozog.

A térfogat és a lineáris véráramlás sebessége között a következő kifejezés jellemzi:

V = Q / Pr 2

ahol V a véráramlás lineáris sebessége, mm / s, cm / s; Q - véráramlás sebessége; P - 3.14-es szám; r a hajó sugara. A Pr 2 értéke a hajó keresztmetszeti területét tükrözi.

Ábra. 1. A vérnyomás változása, a lineáris véráramlás sebessége és a keresztmetszeti terület az érrendszer különböző részein

Ábra. 2. Az érrendszer hidrodinamikai jellemzői

A lineáris sebesség nagyságrendjének az edények térfogati keringési rendszerére gyakorolt ​​függésének kifejeződéséből kiderül, hogy a véráramlás lineáris sebessége (1. ábra) arányos a tartály (ok) on áthaladó térfogati véráramával, és fordítottan arányos az edény (ek) keresztmetszetével. Például a nagy keringési körben a legkisebb keresztmetszeti területű (3-4 cm 2) aortában a vérmozgás lineáris sebessége a legnagyobb és 20-30 cm / s nyugalomban van. Edzés közben 4-5-ször nőhet.

A kapillárisok felé az edények teljes keresztirányú lumenje nő, következésképpen az artériákban és az arteriolákban a véráramlás lineáris sebessége csökken. Kapilláris edényekben, amelyek teljes keresztmetszeti területe nagyobb, mint a nagy kör bármely más szakaszában (az aorta keresztmetszete 500-600-szorosa), a véráramlás lineáris sebessége minimális (kevesebb, mint 1 mm / s). A kapillárisok lassú véráramlása a legjobb feltételeket biztosítja a vér és a szövetek közötti metabolikus folyamatok áramlásához. A vénákban a véráramlás lineáris sebessége a teljes keresztmetszet területének csökkenése következtében emelkedik a szívhez közeledve. Az üreges vénák szájánál 10-20 cm / s, és terheléssel 50 cm / s-ra növekszik.

A plazma és a vérsejtek lineáris sebessége nemcsak az edény típusától, hanem a véráramban való elhelyezkedésétől is függ. Van lamináris típusú véráramlás, amelyben a vér jegyzetei rétegekre oszthatók. Ugyanakkor a vérrétegek (főként plazma) lineáris sebessége az edényfal közelében vagy annak közelében van a legkisebb, és az áramlás közepén lévő rétegek a legnagyobbak. A vaszkuláris endothelium és a közeli falrétegek között súrlódási erők keletkeznek, ami a vaszkuláris endotheliumra nyírófeszültségeket hoz létre. Ezek a feszültségek szerepet játszanak az erek-aktív faktorok kialakulásában az endotheliumban, amely szabályozza a vérerek lumenét és a véráramlás sebességét.

A véredények vörösvértestjei (a kapillárisok kivételével) elsősorban a véráramlás központi részén helyezkednek el, és viszonylag nagy sebességgel mozognak benne. Ezzel ellentétben a leukociták főleg a véráram közeli falaiban helyezkednek el, és a gördülő mozgásokat kis sebességgel hajtják végre. Ez lehetővé teszi számukra, hogy az endotélium mechanikai vagy gyulladásos károsodásának helyén tapadjanak az adhéziós receptorokhoz, tapadjanak az edény falához, és a védőfunkciók elvégzésére migrálnak a szövetbe.

A vér lineáris sebességének jelentős növekedésével az edények szűkített részén, az ágak hajóról való kiürülés helyén a vér mozgásának lamináris jellege helyettesíthető egy turbulensre. Ugyanakkor a véráramlásban a részecskék rétegenkénti mozgása zavaró lehet, az edényfala és a vér között, nagy súrlódási és nyíróerőhatások léphetnek fel, mint a lamináris mozgás során. A Vortex véráramlása fejlődik, az endotheliális károsodás és a koleszterin és más anyagok lerakódásának valószínűsége az edényfal intimájában nő. Ez mechanikai megszakadáshoz vezethet az érfal szerkezetének és a parietális thrombi kialakulásának megkezdéséhez.

A teljes vérkeringés ideje, azaz a vérrészecskék visszatérése a bal kamrába a vérkeringés nagy és kicsi körén belüli kilépése és áthaladása után, a területen 20-25 másodpercig, vagy a szív kamrájából körülbelül 27 szisztolén. Ebből az időből körülbelül egynegyede a kis kör és a háromnegyed - a nagy vérkeringés körének edényein keresztül - a vér mozgására fordul.

A keringési rendszer

Az artériás vér oxigénezett vér.

Vénás vér - szén-dioxiddal telített.

Az artériák olyan véredények, amelyek vért szállítanak a szívből.

A vénák olyan hajók, amelyek vért hordoznak a szívbe. (A pulmonáris keringésben a vénás vér áramlik át az artériákon, és az artériás vér áramlik át a vénákon.)

Emberekben, mint más emlősöknél és madaraknál, van egy négykamrás szív, amely két atriaból és két kamrából áll (az artériás vér a szív bal oldalán, vénás a jobb oldalon, a keverés nem következik be a kamrában lévő teljes szeptum miatt).

A ventrikuláris szelepek a kamrák és az üregek között helyezkednek el, és az artériák és a kamrák a félig-szelepek. A szelepek megakadályozzák a vér visszafolyását (a kamrától az átriumig, az aortától a kamráig).

A bal kamra vastagabb fala, mert nagy vérkeringési körön keresztül tolja a vért. A bal kamra összehúzódásával maximális artériás nyomás jön létre, valamint pulzus hullám.

Nagy vérkeringési kör:

artériás vér az artériákon keresztül

a test minden szervéhez

gázcsere történik a nagy kör kapillárisaiban (a test szervei): az oxigén átjut a vérből a szövetekbe, és a szénből a szövetekből a vérbe (a vér vénásvá válik).

a vénákon keresztül a jobb átriumba kerül

a jobb kamrában.

A keringési rendszer:

vénás vér áramlik a jobb kamrából

a tüdőbe; a tüdőgázcsere kapillárisaiban: a szén-dioxid a vérből a levegőbe jut, és a levegőből az oxigén a vérbe (a vér artériásvá válik)

Emberi vérkeringési körök: a nagy és kis, további jellemzők fejlődése, szerkezete és munkája

Az emberi szervezetben a keringési rendszert úgy tervezték, hogy teljes mértékben megfeleljen a belső igényeinek. A vér fejlődésében fontos szerepet játszik egy olyan zárt rendszer jelenléte, amelyben az artériás és vénás véráramlás elválik. És ez a vérkeringés körök jelenlétével történik.

Történelmi háttér

A múltban, amikor a tudósok nem rendelkeztek olyan informatív eszközökkel, amelyek képesek voltak egy élő szervezet fiziológiai folyamatainak tanulmányozására, a legnagyobb tudósok kénytelenek voltak a holttestek anatómiai jellemzőit keresni. Természetesen az elhunyt személy szíve nem csökken, így néhány árnyalatot egyedül kellett átgondolni, és néha egyszerűen fantáziálnak. Így már II. Században Claudius Galen, Hippocrates műveiből tanulmányozva, feltételezte, hogy az artériák a vérük helyett levegőt tartalmaznak. A következő évszázadok során számos kísérlet történt a rendelkezésre álló anatómiai adatok összekapcsolására és összekapcsolására a fiziológia szempontjából. Minden tudós tudta és megértette, hogyan működik a keringési rendszer, de hogyan működik?

A 16. században Miguel Servet és William Garvey tudósok óriási mértékben hozzájárultak a szívvel kapcsolatos adatok rendszerezéséhez. Harvey, a tudós, aki először írta le a nagy és kis köröket a vérkeringésben, 1616-ban határozta meg a két kör jelenlétét, de nem tudta megmagyarázni, hogy az artériás és vénás csatornák összekapcsolódnak-e. És csak később, a 17. században, Marcello Malpighi, az egyik első, aki a gyakorlatban mikroszkópot kezdett használni, felfedezte és leírta a legkisebb, láthatatlan meztelen szemkapillárisok jelenlétét, amely a vérkeringési körökben hivatkozásként szolgál.

Filogenezis vagy a vérkeringés fejlődése

Tekintettel arra, hogy az állatok fejlődésével a gerincesek osztálya anatómiai és fiziológiai szempontból progresszívebbé vált, komplex eszközt és kardiovaszkuláris rendszert igényeltek. Tehát a gerinces állat testében a folyékony belső környezet gyorsabb mozgása érdekében megjelent a zárt vérkeringési rendszer szükségessége. Az állatvilág más osztályaihoz képest (például ízeltlábúak vagy férgek esetében) a húrok kifejlesztik a zárt érrendszer alapjait. Ha például a lanceletnek nincs szíve, de van egy ventrális és dorsalis aorta, akkor a halakban, kétéltűek (kétéltűek), hüllők (hüllők) két- és háromkamrás szívvel, illetve madarakban és emlősökben - egy négykamrás szívvel, ami a vérkeringés két körének középpontjában áll, nem keverednek egymással.

Így a két, egymástól elkülönülő körben a vérkeringés madarakban, emlősökben és emberekben nem más, mint a keringési rendszer fejlődése, amely a környezeti feltételekhez való jobb alkalmazkodáshoz szükséges.

A keringési körök anatómiai jellemzői

A vérkeringési körök véredények halmaza, amely egy zárt rendszer az oxigén és a tápanyagok belső szerveibe való belépéshez gázcsere és tápanyagcsere révén, valamint a szén-dioxid eltávolítása a sejtekből és más metabolikus termékekből. Az emberi testre jellemző két kör - a szisztémás, vagy a nagy, valamint a tüdő, amelyet kis körnek is neveznek.

Videó: A vérkeringési körök, a mini-előadás és az animáció

Nagy vérkeringési kör

A nagy kör fő funkciója, hogy gázcserét biztosítson minden belső szervben, a tüdő kivételével. A bal kamra üregében kezdődik; az aorta és ágai, a máj, a vesék, az agy, a csontváz izmok és más szervek artériás ága képviseli. Továbbá ez a kör folytatódik a felsorolt ​​szervek kapilláris hálózatával és vénás ágyával; és a vena cava-t a jobb pitvar üregébe áramolva végül az utolsó.

Tehát, mint már említettük, egy nagy kör kezdete a bal kamra ürege. Ez az az érrendszeri véráramlás, amely az oxigén nagy részét tartalmazza, mint a szén-dioxid. Ez a patak belép a bal kamrába közvetlenül a tüdő keringési rendszeréből, azaz a kis körből. Az artériás áramlás a bal kamrából az aorta szelepen keresztül a legnagyobb fő edénybe, az aortába kerül. Az aorta ábrázolhatóan hasonlítható egy olyan fával, amelynek sok ága van, mert az artériákat a belső szervekhez (a májhoz, a vesékhez, a gyomor-bél traktushoz, az agyhoz - a nyaki artériák rendszerén keresztül, a vázizomzatig, a szubkután zsírba hagyja). rost és mások). A szerv artériák, amelyek többszörös következményekkel is rendelkeznek és hordozzák a megfelelő anatómiai nevet, minden szervhez oxigént hordoznak.

A belső szervek szövetében az artériás edények kisebb és kisebb átmérőjű edényekbe vannak osztva, és így kapilláris hálózat jön létre. A kapillárisok a legkisebb edények, amelyek gyakorlatilag nincsenek közepes izmos réteggel, és a belső bélés az endothel sejtek által bélelt intima. Ezeknek a sejteknek a mikroszkópos szintre eső rései olyan nagyok, mint a többi edényben, amelyek lehetővé teszik a fehérjék, gázok és még kialakult elemek szabadon behatolását a környező szövetek sejtközi folyadékába. Így az artériás vér és a szervben lévő extracelluláris folyadék között a kapilláris intenzív gázcsere és más anyagok cseréje történik. Az oxigén behatol a kapillárisból, és a szén-dioxid, mint sejt-anyagcsere terméke, a kapillárisba kerül. A lélegeztetés sejtjeit végzik.

Ezeket a vénákat nagyobb vénákba egyesítik, és vénás ágyat képeznek. A vénák, mint például az artériák, viselik azokat a neveket, amelyekben az orgona található (vese, agy, stb.). A nagy vénás törzsekből a felső és a rosszabb vena cava mellékfolyói képződnek, az utóbbi pedig a jobb átriumba áramlik.

Jellemzői a véráramlásnak a nagy kör szerveiben

A belső szervek némelyikének saját jellemzői vannak. Így például a májban nemcsak a vénás vénát, hanem a vénás áramlást is összekapcsolják, hanem a portálvénát is, amely ellenkezőleg, a vért a májszövetbe juttatja, ahol a vér tisztítását végzik, és csak akkor kerül a vér a vénás mellékfolyókba, hogy kapjanak egy nagy körbe. A portálvénából a vér a gyomorból és a belekből származik, így minden, amit egy személy megevett vagy részeg, egyfajta „tisztítást” kell végezni a májban.

A máj mellett más szervekben is vannak bizonyos árnyalatok, például az agyalapi mirigy és a vesék szövetében. Tehát, az agyalapi mirigyben van egy úgynevezett „csodálatos” kapilláris hálózat, mert az artériák, amelyek a hypothalamusból az agyalapi mirigybe vért hoznak, kapillárisokra vannak osztva, amelyeket azután a vénákba gyűjtenek. A vénák, miután a vér a felszabadító hormon molekulákkal összegyűltek, ismét kapillárisokká vannak felosztva, majd létrejönnek az agyalapi mirigyből származó vénák. A vesékben az artériás hálózatot kétszer osztják fel kapillárisokba, amelyek a vesefejek kiválasztódási és reabszorpciós folyamataihoz kapcsolódnak - a nephronokban.

A keringési rendszer

Funkciója a gázcsere-folyamatok végrehajtása a tüdőszövetben annak érdekében, hogy az „elhasznált” vénás vér oxigén molekulákkal telítődjön. A jobb kamra üregében kezdődik, ahol a vénás véráramlás rendkívül kis mennyiségű oxigénnel és nagy szén-dioxid-tartalommal lép be a jobb pitvari kamrából (a nagy kör „végpontjából”). Ez a vér a pulmonalis artéria szelepén keresztül az egyik nagy edénybe kerül, amelyet tüdő törzsnek neveznek. Ezután a vénás áramlás az artériás csatorna mentén mozog a tüdőszövetben, amely a kapillárisok hálózatába is szétesik. A más szövetekben lévő kapillárisokhoz hasonlóan a gázcsere zajlik, csak oxigénmolekulák lépnek be a kapilláris lumenébe, és a szén-dioxid behatol az alveolocitákba (alveoláris sejtek). A légzés minden egyes lépésével a környezetből származó levegő belép az alveolákba, ahonnan az oxigén sejtmembránokon keresztül jut be a vérplazmába. A kilégzett levegőn a kilégzés során az alveolákba belépő szén-dioxid kiürül.

Az O molekulák telítettsége után2 a vér artériás tulajdonságokat szerez, áthalad a vénákon, és végül eléri a tüdővénákat. Az utóbbi négy vagy öt darabból áll, amely a bal pitvar üregébe nyílik. Ennek eredményeként a vénás véráramlás a szív jobb felén keresztül áramlik, és az artériás áramlás a bal felén keresztül; és általában ezeket a folyamokat nem szabad összekeverni.

A tüdőszövet kettős hálózattal rendelkezik. Az elsővel a gázcsere folyamatokat végzik annak érdekében, hogy gazdagítsák a vénás áramlást oxigén molekulákkal (összekapcsolás közvetlenül egy kis körrel), és a másodikban maga a tüdőszövet oxigénnel és tápanyagokkal van ellátva (összekapcsolás nagy körrel).

További vérkeringési körök

Ezeket a fogalmakat az egyes szervek vérellátásának kiosztására használják. Például a szívhez, amelyre a legtöbb oxigénre van szükség, az artériás beáramlás az aortai ágakból származik, melyek a jobb és bal koronária (koszorúér) artériák. Intenzív gázcsere történik a szívizom kapillárisaiban, és a vénás kiáramlás a szívkoszorúerekben. Ez utóbbiakat a koszorúér-szinuszba gyűjtik, amely közvetlenül a jobb pitvari kamrába nyílik. Ily módon a szív vagy a koszorúér-keringés.

szívkoszorúér-keringés

Willis köre az agyi artériák zárt artériás hálózata. Az agyi kör további vérellátást biztosít az agynak, amikor az agyi véráramlást más artériákban zavarják. Ez megvédi az ilyen fontos szerveket az oxigénhiánytól vagy a hipoxiától. Az agyi keringést az elülső agyi artéria kezdeti szegmense, a hátsó agyi artéria kezdeti szegmense, az elülső és a hátsó kommunikációs artériák, valamint a belső carotis artériák képviselik.

Willis kör az agyban (a szerkezet klasszikus változata)

A vérkeringés placentális köre csak a magzat terhessége alatt egy nőnél működik, és a „légzés” funkciót végzi a gyermekben. A placentát a terhesség 3-6 hetétől kezdődően alakítják ki, és a 12. héttől kezdve teljes mértékben működésbe lép. Az a tény, hogy a magzati tüdő nem működik, az oxigént a gyermek köldökvénájába történő artériás véráramlással szállítják.

vérkeringés a születés előtt

Így az egész emberi keringési rendszer külön-külön összekapcsolt területekre osztható, amelyek ellátják a funkcióikat. Az ilyen területek vagy a vérkeringés körök megfelelő működése a szív, az erek és az egész szervezet egészséges munkájának kulcsa.

Az emberi vérkeringés körei - a keringési rendszer rendszere

A növények gyökérrendszerével analóg módon a személy belsejében lévő vér különböző méretű hajókon keresztül táplálja a tápanyagokat.

A táplálkozási funkció mellett a levegő oxigén szállítása is történik - a cellás gázcserét végzik.

A keringési rendszer


Ha megnézzük a vérkeringés rendszerét a testben, annak ciklikus útja nyilvánvaló. Ha nem veszi figyelembe a vér placentális áramlását, a kiválasztottak között van egy kis ciklus, amely a szövetek és szervek légzését és gázcseréjét biztosítja, és befolyásolja az emberi tüdőt, valamint egy második, nagy ciklust, tápanyagokat és enzimeket hordoz.

A keringési rendszer feladata, amely a tudós Harvey tudományos kísérleteinek köszönhetően (a 16. században felfedezte a vérköröket) általában a vér és a nyiroksejtek promóciójának megszervezését jelenti az edényeken keresztül.

A keringési rendszer


Felülről a jobb pitvari kamrából a vénás vér a jobb szívkamrába kerül. A vénák közepes méretű hajók. A vér a részek között halad át, és a szívüreg üregéből kilép egy szelepen keresztül, amely a tüdő törzsének irányába nyílik.

Ebből a vér belép a pulmonalis artériába, és az emberi test fő izomzatától távolodva a vénák a tüdőszövetek artériáiba áramolnak, és a kapillárisok több hálózatába fordulnak. Szerepük és elsődleges funkciójuk olyan gázcsere-folyamatok végrehajtása, amelyekben az alveolociták szén-dioxidot vesznek.

Mivel az oxigén az egész vénákban eloszlik, az artériás jellemzők a véráramlásra jellemzőek. Így a vénák mentén a vér közeledik a pulmonális vénákhoz, amelyek a bal átriumba nyílnak.

Nagy vérkeringési kör


Nézzük meg a nagy vérciklust. Egy nagy vérkeringési kört indít a bal szív kamrából, amely O-val dúsított artériás áramlást kap2 és kimerült CO2, amely a pulmonáris keringésből táplálkozik. Hová megy a vér a szív bal kamrájából?

A bal kamra után a mellette lévő aorta szelep az artériás vért az aortába tolja. Elosztja az artériákat az o2 nagy koncentrációban. A szívtől távolodva az artériás cső átmérője megváltozik - csökken.

A kapilláris edényekből az egész CO-ot összegyűjtjük.2, és egy nagy kör áramlik a vena cava-ba. Ezek közül a vér ismét belép a jobb pitvarba, majd a jobb kamrába és a tüdő törzsébe.

Így a jobb oldali pitvarban a vérkeringés nagy köre véget ér. És a kérdésre - hol jön a vér a szív jobb kamrájából, a válasz a pulmonalis artériára.

Az emberi keringési rendszer rendszere

Az alábbiakban leírt rendszer a vérkeringés folyamatának nyilakkal röviden és egyértelműen mutatja be a szervezetben a vérmozgás útjának megvalósításának sorrendjét, jelezve a folyamatban részt vevő szerveket.

Emberi keringési szervek

Ezek közé tartozik a szív és az erek (vénák, artériák és kapillárisok). Tekintsük a legfontosabb szervet az emberi testben.

A szív önszabályozó, önszabályozó, önkorrekciós izom. A szív mérete a vázizmok fejlődésétől függ - minél nagyobb a fejlődésük, annál nagyobb a szíve. Szerkezete szerint a szív 4 kamra - 2 kamra és 2 atria, és elhelyezni a pericardium. A maguk és az atria közötti kamrákat speciális szívszelepek választják el.

A szív oxigénnel történő feltöltése és telítettsége a koronária artériái, vagy úgynevezett "koszorúerek".

A szív fő feladata, hogy a szivattyút a testben végezze. A hibák több oka is van:

  1. Nem megfelelő / túlzott véráramlás.
  2. A szívizom sérülése.
  3. Külső szorítás.

Másodszor a keringési rendszerben az erek.

Lineáris és térfogati véráramlás sebessége

A vérsebesség-paraméterek figyelembe vételével a lineáris és térfogati sebesség fogalmát kell alkalmazni. A fogalmak között matematikai kapcsolat van.

Hol mozog a vér a legnagyobb sebességgel? A véráramlás lineáris sebessége közvetlenül arányos a térfogatárammal, amely az edény típusától függően változik.

A legnagyobb véráramlás sebessége az aortában.

Hol mozog a vér a legalacsonyabb sebességgel? A legalacsonyabb sebesség az üreges vénákban van.

A teljes vérkeringés ideje

Egy felnőttnek, akinek a szíve percenként körülbelül 80 darabot vág, a vér 23 másodperc alatt végigfut, és 4,5-5 másodpercet oszt ki egy kis körre és 18-18,5 másodpercet egy nagyra.

Az adatokat egy tapasztalt módszer igazolja. Minden kutatási módszer lényege a címkézés elve. Megfigyelt anyagot vezetnek be a vénába, ami nem jellemző az emberi testre, és a helyét dinamikusan alakítják ki.

Ez azt jelzi, hogy az anyag milyen mértékben jelenik meg a másik oldalon lévő azonos nevű vénában. Ez az ideje a teljes vérkeringésnek.

következtetés

Az emberi test egy összetett mechanizmus különböző rendszerekkel. A keringési rendszer a legfontosabb szerepét a megfelelő működésben és az élet fenntartásában. Ezért nagyon fontos megérteni annak szerkezetét és tartani a szív és az erek tökéletes sorrendjét.

Rövid és érthető az emberi keringésről

A szövetek táplálkozása oxigénnel, fontos elemekkel, valamint a széndioxid és a metabolikus termékek eltávolítása a szervezetben a sejtekből a vér funkciója. A folyamat egy zárt vaszkuláris út - egy személy vérkeringésének körzete, amelyen keresztül folyamatos áramlási folyamat folyik, és a mozgás sorrendjét speciális szelepek biztosítják.

Emberekben több vérkeringési kör van

Hány vérkeringési kör van egy személynek?

Az ember vérkeringése vagy hemodinamika a plazma folyadék folyamatos áramlása a test edényein keresztül. Ez zárt típusú zárt út, azaz nem érintkezik a külső tényezőkkel.

A hemodinamika:

  • fő körök - nagy és kicsi;
  • további hurkok - placenta, koronális és willis.

A ciklus ciklusa mindig tele van, ami azt jelenti, hogy az artériás és vénás vér nem keveredik össze.

A plazma keringése megfelel a szívnek - a hemodinamika fő szervének. Két felére oszlik (jobbra és balra), ahol a belső szakaszok találhatók - a kamrák és az atria.

A szív az emberi keringési rendszer fő szerve

A folyadék mozgó kötőszövet áramának irányát szívdobozok vagy szelepek határozzák meg. Ezek szabályozzák a plazma áramlását az atriából (szelep) és megakadályozzák az artériás vér visszatérését a kamrába (félhold).

Nagy kör

A hemodinamika nagy választékához két funkció van hozzárendelve:

  • telítsük az egész testet oxigénnel, terjesszük a szükséges elemeket a szövetbe;
  • a gáz-dioxid és a mérgező anyagok eltávolítása.

Itt vannak a felső és az üreges vena cava, a venulák, az artériák és az artioli, valamint a legnagyobb artéria - az aorta, amely a kamra szívének bal oldalán található.

A vérkeringés nagy köre oxigénnel telíti a szerveket, és eltávolítja a mérgező anyagokat.

A kiterjedt gyűrűben a vér folyadék áramlása a bal kamrában kezdődik. A tisztított plazma kilép az aortán keresztül, és az összes szervre átterjed az artériákon, az arteriolákon keresztül, elérve a legkisebb edényeket - a kapilláris rácsot, ahol oxigént és hasznos komponenseket adnak a szöveteknek. Veszélyes hulladékot és szén-dioxidot távolítanak el. A plazma visszatérési útja a szívbe a vénákon keresztül jut, amelyek zökkenőmentesen áramlanak az üreges vénákba - ez a vénás vér. A nagy hurokhurok a jobb pitvarban végződik. A teljes kör hossza - 20-25 másodperc.

Kis kör (tüdő)

A tüdőgyűrű elsődleges szerepe a tüdő alveoláiban gázcsere, valamint hőátadás. A ciklus alatt a vénás vér oxigénnel telített, szén-dioxidtól mentes. Van egy kis kör és további funkciók. Ez blokkolja a nagy körből behatolt emboliák és vérrögök további fejlődését. És ha a vér mennyisége megváltozik, akkor külön vaszkuláris tartályokban halmozódik fel, amelyek normál körülmények között nem vesznek részt a keringésben.

A tüdőkör szerkezete a következő:

  • tüdővénák;
  • kapillárisok
  • pulmonalis artéria;
  • arteriolák.

A szív jobb oldali pitvarából kilépő vénás vér áthalad a nagy pulmonális törzsbe, és belép a kis gyűrű központi szervébe - a tüdőbe. A kapilláris hálózatban a plazma-dúsítás folyamata oxigénnel és szén-dioxiddal történik. Az artériás vért már a pulmonális vénákba infundáljuk, amelynek végső célja az, hogy elérjük a bal szívritmust (atrium). Ebben a ciklusban a kis gyűrű bezárul.

A kisgyűrű sajátossága az, hogy a plazma mozgása az ellenkező sorrendben van. Itt a szén-dioxidban és a sejthulladékban gazdag vér áramlik át az artériákon, és az oxigenált folyadék áthalad az erek között.

Extra körök

Az emberi fiziológia jellemzői alapján a 2 fő mellett 3 további hemodinamikai gyűrű található: placenta, szív vagy korona és Willis.

placenta

A magzat méhen belüli fejlődési ideje magában foglalja a vérkeringés körét az embrióban. Fő feladata, hogy oxigénnel és hasznos elemekkel telítse el a jövő gyermekének minden szövetét. A folyékony kötőszövet a magzat szervrendszerébe jut át ​​az anyai placentán keresztül a köldökvénás kapilláris hálózaton keresztül.

A mozgás sorrendje a következő:

  • a magzatba belépő anya artériás vérét a test alsó részéből összekeverik a vénás vérével;
  • a folyadék a jobb átrium felé mozog az alsó vena cava-n keresztül;
  • nagyobb térfogatú plazma lép be a szív bal oldalába az interatrialis septumon keresztül (egy kis kör hiányzik, mivel még nem működik az embrióban) és átmegy az aortába;
  • a fennmaradó mennyiségű nem osztott vér a jobb kamrába áramlik, ahol a felső vena cava, amely összegyűjti az összes vénás vért a fejből, belép a szív jobb oldalába, és onnan a tüdő törzsébe és az aortába;
  • az aortából a vér az embrió összes szövetére terjed.

A vérkeringés placenta köre oxigénnel és szükséges elemekkel telíti a gyermek szerveit.

Szív kör

Annak a ténynek köszönhetően, hogy a szív folyamatosan szívja a vért, fokozott vérellátást igényel. Ezért a nagy kör szerves része a koszorúér. A koszorúérrel kezdődik, amely a fő szervet koronaként veszi körül (így a további gyűrű neve).

A szívkör táplálja az izmos szervet vérrel.

A szív körének szerepe az, hogy növelje az üreges izmos szerv vérellátását. A koszorúér gyűrű sajátossága az, hogy a hüvelyi ideg befolyásolja a koszorúerek összehúzódását, míg más artériák és vénák összehúzódása befolyásolja a szimpatikus ideget.

Willis köre

A teljes agyi vérellátásért Willis köre felel. Egy ilyen hurok célja, hogy kompenzálja a vérkeringési hiányt az erek elzáródása esetén. hasonló helyzetben más artériás medencékből származó vér kerül felhasználásra.

Az agyi artériás gyűrű szerkezete olyan artériákat tartalmaz, mint:

  • elülső és hátsó agy;
  • elülső és hátsó kötőelem.

A vérkeringés Willis köre vérrel tölti ki az agyat

Az emberi keringési rendszer 5 körből áll, ebből 2 fő és 3 további, köszönhetően számukra a test vérellátásának. A kis gyűrű gázcserét hajt végre, és a nagy gyűrű az oxigén és a tápanyagok minden szövetre és sejtre történő szállításáért felelős. A további körök fontos szerepet játszanak a terhesség alatt, csökkentik a szív terhelését és kompenzálják az agy vérellátását.

Értékeld ezt a cikket
(1 jegy, átlagosan 5,00 az 5-ből)

Hogyan történik a pulmonális keringés?

A test vérellátó rendszerében két fő kör van, amelyek közül az egyik, a tüdő, a vérkeringés kis köre, mivel annak hossza kicsi. Ez a vérellátási rendszer eleme csak a test tüdőit fedi le. Egy ilyen vérellátási rendszer jellemző az emlősökre.

A test vérellátási rendszerének jellemzői

Mielőtt egy kis körről beszélnénk, érdemes néhány szót mondani a keringési körből. A melegvérű keringési rendszerben a teljes zárt típusra utal. Ez teljesnek tekinthető, mert nem keveri össze az artériás és vénás vért. A zárt típus azt jelenti, hogy a vérkeringési folyamat nem jelenti a kommunikációt a külső környezettel.

Annak ellenére, hogy a vér kötőszövet, állandó mozgásban van: a testek, szervek, szövetek minden részén áthaladó kiterjedt hajóhálózaton keresztül áramlik. A keringési rendszer magában foglalja az edényeket és a szívet. A hajók több típusra oszthatók: artériák, vénák és a harmadik típusú hajók - kapillárisok.

Az artériák olyan hajók, amelyeken keresztül a vér a szívből mozog. Az artériák sajátossága - rugalmas, de ugyanakkor nagyon vastag falak. Az aorta a test legnagyobb artériája.

A vénák vért hordoznak a szívbe. Falaik sokkal vékonyabbak, mint az artériáké.

A kapillárisok a legvékonyabb hajók, amelyek egy elágazó keringési hálózatot alkotnak, amely áthalad a test minden szövetében. A kapillárisok kis átmérőjűek - vékonyabbak, mint egy haj. Falaik egyetlen szövetrétegből állnak, amelyen keresztül a gáz, a fehérvérsejtek és a különböző oldható anyagok könnyen átjuthatnak.

A véráramlás iránya szelepek segítségével jön létre. A kamrák felé nyitva állnak, és szabályozzák a vér vérét az atriából. A félhold nem teszi lehetővé az artériás vér visszatérését a kamrába. Ezek a félkör alakú zsebek, amelyek az artéria kijáratánál találhatók. A vér hatására a félszárnyú szelepek kibővülnek, vérrel töltik és zárják. Ennek eredményeképpen a tüdő köréből és az aortából a kamrába vezető kurzus bezárul. A keringési rendszer munkáját speciális szabályozási rendszerek végzik. A szervezetben a vérkeringés ideges és humorális szabályozása van.

A szív szerkezetének jellemzői

A keringési rendszer központi szerve a szív, amely egy olyan szivattyú, amely a vér áthalad az edényeken. Ez a szerv kúpos alakú, a mellkasban, a központtól kissé balra, a tüdő között helyezkedik el. A szív mérete megközelítőleg megegyezik az ököl méretével, és a tömeg 250 és 300 g között lehet.

A szív a szívzsákban található - egy speciális zsák, amely egy bizonyos mennyiségű folyadékot tartalmaz, amely nedvesíti a szív felületét. Ez lehetővé teszi a súrlódás csökkentését a szív összehúzódása során.

A szív egy üreges szerv, amely négy kamrából áll: két atria, bal és jobb, és két kamra, bal és jobb. A kamrák különböznek a nagyobb méretű és nagyobb falvastagságtól, és a bal kamra falát a legjobban kifejlesztik. A test mindkét részét nem jelentik.

A testnek ez a szerkezete az üregek kinevezésével magyarázható: az atria csak a vért üríti a kamrába, ami azt jelenti, hogy kevesebb munkát végeznek. A kamrák a vért a vérkeringési körökbe tolják el úgy, hogy nagy erő hatására a legtávolabbi területekre terjed.

A keringési körök fogalma

A szervezetben a vérellátás általános rendszere nagy és kis vérkeringési köröket tartalmaz. Az emlősök vagy a melegvérű állatok és az emberek keringési rendszerének ez a jellemzője a vérkeringés felfedezése után vált ismertté William Harvey által a 17. században. Azt a következtetést vonta le, hogy a vér az áramkör befejezése után visszatér a szívbe ugyanúgy, mint a Föld körül a nap körül forog. Mivel a mikroszkóp még nem volt feltalálva, és semmi sem volt ismert a kapillárisok létezéséről, Harvey felfedezése a nagy és kis keringésről tudományos előrejelzéssé vált.

A keringési rendszer egy ördögi kör, amelyben a tápanyagokat és az oxigént szállítják a sejtekbe, és az anyagcsere termékeit és a szén-dioxidot elvezetik.

A vérkeringés két egymással összekapcsolt hajó "hurokból" áll. A vér először áthalad a kicsi, majd a szisztémás keringésben. A véráramlás sorrendjét az edényeken keresztül speciális szelepek biztosítják.

Vannak azonban "további" körök:

A lokális kör csak a magzat méhen belüli tartózkodása alatt létezik. Ebben az esetben az anya testéből származó vér átjut a magzat placentába, ahol tápanyagokat szállít a gyermek köldökvénájának kapillárisaiba.

A koszorúér-keringés a szívkeringés. Ez egy nagy kör összetevője, de a szív fontossága miatt egyes forrásokban különálló elemként tűnik ki.

Willis köre áthalad az agy alján és szükséges a vérellátás hiányának kompenzálásához.

Nagy vérkeringési kör

A vérkeringés nagy köre a bal kamrából indul és a jobb oldali pitvarral végződik. Az oxigénnel telített vért (artériás, fényes skarlát) kihúzzák és befecskendezik az aortába, a legszélesebb edénybe. Az aortát nagyszámú artériába osztják, párhuzamos vascularis hálózatokat alkotva. Elmondása szerint a vér a szervekhez és a szövetekhez megy: az agy, a hasi szervek. Az ágyéki régióban az artéria villák: az egyik, mert „összekapcsolódik” az alsó végtagok keringési hálózatával, a másik pedig a nemi szervekkel.

Az artériák már a szervekben elágaznak a kapillárisokba, a falakon, amelyekből a vér belép a szövetfolyadékba. Ugyanezen a helyen a vér szén-dioxiddal telített, metabolikus termékeket gyűjt, vénásvá válik, sötétebb, mint az artériás.

A kapillárisokból a vénás vér átjut a vénákba, amelyek együttesen nagyobb vénákat képeznek.

Az alsó végtagokból, a törzsből és a hasüregből a vénás vér belép a vénába, ahonnan a jobb átriumba kerül. A fejből, a felső végtagokból és a nyakból vér van a felső vena cava-n keresztül. Itt a vér nagy keringése véget ér.

Például egy nagy körbe tartozó hajók láthatók a hajtogatókon, általában a könyöknél jól láthatóak.

Mi a pulmonális keringés?

A jobb kamrából az átriumba vezető út sokkal rövidebb, mint a nagy. Ezért megkapta a "kicsi" nevet. Ennek a körnek a fő célja az, hogy gázcserét folytasson a tüdő alveoláiban és a hőátadást.

Ugyanakkor a tüdőkör több funkciót is ellát:

  1. Gázcsere a vér és az alveoláris levegő között.
  2. Különböző idegen vérrészecskék késleltetése nagy körből (vérrögök, embóliák). A vérerek térfogatának megváltoztatásakor - a letétbe helyezett vér.

A tüdő keringése a jobb pitvarban kezdődik. Innen a nagyon kis oxigént tartalmazó vénás vér egy nagy edénybe (de az aortánál vékonyabb) kerül a pulmonális törzsbe. Közvetlenül a tüdőben a pulmonális törzs két pulmonális artériára van felosztva, a jobbra és balra. A bal artéria véréből a bal tüdőbe, jobbra - jobbra.

A tüdő a vérkeringés kis körének központi része.

Ezek az artériák ismételten többszörös kapillárisokba zárták a légzőbuborékokat. Gázcsere történik ezekben a szinuszos kapillárisokban, amelyek átmérője 30 μm: a vér oxigenizációs folyamata folyik, azaz oxigéntelítettség, itt szén-dioxid keletkezik, és artériássá válik.

A vér a pulmonalis kapillárisokban állandó sebességgel mozog az állandó nyomás következtében. A kapillárisok lassú áramlása lehetővé teszi, hogy a vér megkapja a szükséges mennyiségű oxigént, és ideje a szén-dioxid felszabadítására. A pulmonáris keringésben lévő hajók nagyon vékony falak, így normál körülmények között nem okoznak akadályt az oxigén és a szén-dioxid áthaladásához.

Egy légbuborék, amely eltömíti a lumenet, akadályozhatja a kapillárisok véráramlását. Ilyen helyzet akkor fordulhat elő, ha intravénás kábítószert adnak be, ha a levegő belép a véráramba. Az eredmény egy légembólia.

A négy tüdővénában már oxigénben gazdag artériás vér van. A kisebb vénákat 4 nagy pulmonális vénába gyűjtik, és belépnek a bal pitvarba. Ez véget vet a vérkeringés kis körének. Ezután a vér az atrioventrikuláris nyíláson keresztül belép a bal pitvarba, nagy vérkeringési kört kezd, amelyen keresztül az oxigén belép az emberi test összes szervébe és szövetébe.

A pulmonáris keringés jellemzői

A vér áthaladásának ideje a tüdő körön belül 4-5 másodperc lehet. Ez az idő elegendő ahhoz, hogy a test oxigént nyújtson nyugodt állapotban. Az oxigénfogyasztás növekedésével például a nehéz fizikai terhelés vagy intenzív edzés során a szívnyomás emelkedik, a véráramlás gyorsul.

A kis (tüdő) kör egyik fontos jellemzője, hogy alacsony nyomású rendszer. Az artériák átlagos nyomása legfeljebb 25 mm Hg lehet. Art. a pulmonalis artériában és 6-8 mm között. Hg. Art. a vénákban.

A keringési rendszer két vérkeringési körre való felosztása fontos előnnyel jár: lehetővé teszi, hogy „kivegye” a szívét, mivel a használt vér, amelyben nagyon kevés oxigén van, elválik az oxigénben dúsított anyagtól. Ezért a szív sokkal kisebb terhelést tapasztalt, mint egy vérkeringésnél, mivel ebben az esetben mind a vénás, mind az artériás vért kell pumpálnia.

A vénák csak széndioxidot tartalmazó vénás vért hordoznak, és az artériák oxigénben gazdag artériás vért hordoznak. De van egy kivétel: egy kis körben minden történik pontosan az ellenkezőjével: a „friss” vér áramlik át a vénákon, és „használják” - az artériákon keresztül.

A véráramlás szabályozása a pulmonáris keringésben

A tüdő nagy edényei - reflexogén zóna. Ezek a kis edények reflexióját biztosítják. A növekvő nyomás következtében a vérnyomás reflexes csökken.

Az érzékelők szerepe a véráramlás szabályozásában az idegsejtek, amelyek bizonyos vérparamétereket követnek, beleértve a szén-dioxid, az oxigén és a különböző folyadékok koncentrációját, a pH-t (savasság), a hormonok jelenlétét. Ez az információ belép az agyba, ahol az adatfeldolgozás zajlik.

Az agy szabályozása a szív és a vérerek megfelelő impulzusait küldi. Ezenkívül a véráramlást az artériákban elhelyezkedő belső lumenek szabályozzák. Folyamatosan szabályozzák a véráramlás sebességét. Amint a szívverés lelassul, az artériák szűkülnek, és ha felgyorsulnak, az artériák tágulnak.

A véráramlás sebességét befolyásoló másik tényező az adrenalin. Ez a vérerek dilatációját vagy összehúzódását okozhatja az a- és b-adrenerg receptorok hatására. Az adrenalin hatása számos körülménytől függ, hogy milyen típusú receptorok (a- vagy b-) dominálnak a vérben, és az anyag koncentrációja. Alacsony koncentrációban az adrenalin elsősorban a b-adrenoreceptorokra hat, mint a legérzékenyebb.

Néhány edényben, például a csontvázak edényeiben β-adrenoreceptorok dominálnak, de az a csoport receptorai gyakrabban fordulnak elő. Ezért az adrenalin, ha fizikai koncentrációban keletkezik, a legtöbb edény szűkülését és az izomtestek bővülését okozza. Ennek eredményeképpen a véráramlás a csontvázak javára kerül eloszlásra. Így a test a stressz alatt álló intenzív munkára készül.