logo

A szív szerkezete és elve

A szív egy izmos szerv az emberekben és az állatokban, amelyek a véredényeket szivattyúzzák.

Szívfunkciók - miért van szükségünk szívre?

Vérünk az egész testet oxigénnel és tápanyagokkal biztosítja. Emellett tisztító funkcióval is rendelkezik, ami segít a metabolikus hulladék eltávolításában.

A szív funkciója az, hogy a vért a véredényeken keresztül szivattyúzza.

Mennyibe kerül a vér a személy szívpumpa?

Az emberi szív körülbelül 7 000-10 000 liter vért pumpál egy nap alatt. Ez körülbelül 3 millió liter évente. Egy élettartamban akár 200 millió liter is kiderül!

A szivattyúzott vér mennyisége egy percen belül függ az aktuális fizikai és érzelmi terhektől - minél nagyobb a terhelés, annál több vérre van szüksége a szervezetben. Így a szív 5 percről 30 literre juthat át egy perc alatt.

A keringési rendszer mintegy 65 ezer edényből áll, teljes hossza mintegy 100 ezer kilométer! Igen, nem vagyunk lezárva.

A keringési rendszer

Keringési rendszer (animáció)

Az emberi szív- és érrendszer két vérkeringési körből áll. Minden szívverésnél a vér mindkét körben egyszerre mozog.

A keringési rendszer

  1. A jobb és rosszabb vena cava-ból származó oxigénmentes vér belép a jobb pitvarba, majd a jobb kamrába.
  2. A jobb kamrából a vér a tüdő törzsébe kerül. A pulmonalis artériák közvetlenül a tüdőbe vonják a vért (a pulmonáris kapillárisok előtt), ahol oxigént kap, és széndioxidot szabadít fel.
  3. Miután elegendő oxigént kapott, a vér a pulmonális vénákon keresztül visszatér a szív bal pitvarába.

Nagy vérkeringési kör

  1. A bal pitvarból a vér a bal kamrába mozog, ahonnan tovább szivattyúzódik az aortán keresztül a szisztémás keringésbe.
  2. Miután elhaladt egy nehéz úton, ismét az üreges vénákon keresztül jön a vér a szív jobb pitvarába.

Általában a szív kamrájából kivont vér mennyisége minden egyes összehúzódással azonos. Így egyenlő mennyiségű vér folyik egyidejűleg a nagy és kis körökbe.

Mi a különbség az erek és az artériák között?

  • A vénákat úgy tervezték, hogy a vér a szívbe jussanak, és az artériák feladata az ellenkező irányba történő vérellátás.
  • A vénákban a vérnyomás alacsonyabb, mint az artériákban. Ennek megfelelően a falak artériáit nagyobb rugalmasság és sűrűség jellemzi.
  • Az artériák telítették a "friss" szövetet, és a vénák a "hulladék" vérét veszik.
  • Vaszkuláris károsodás esetén az artériás vagy vénás vérzés megkülönböztethető a vér intenzitása és színe alapján. Az artériás - erős, pulzáló, „szökőkút”, a vér színe fényes. Vénás - állandó intenzitású vérzés (folyamatos áramlás), a vér színe sötét.

A szív anatómiai szerkezete

Egy személy szívének súlya mindössze 300 gramm (átlagosan 250 g nőknél és 330 g férfiaknál). A viszonylag kis súly ellenére ez kétségtelenül az emberi test fő izma és létfontosságú tevékenységének alapja. A szív mérete valójában megközelítőleg megegyezik egy személy ökölével. A sportolók színe másfélszer nagyobb, mint egy hétköznapi ember.

A szív a mellkas közepén helyezkedik el, 5-8 csigolya szintjén.

Általában a szív alsó része a mellkas bal felében található. Van egy változata a veleszületett patológiának, amelyben minden szerv tükröződik. Ezt a belső szervek átültetésének nevezik. A tüdő, amely mellett a szív található (általában bal), kisebb méretű a másik feléhez képest.

A szív hátsó felülete a gerincoszlop közelében helyezkedik el, és az elülső oldalt biztonságosan védi a szegycsont és a bordák.

Az emberi szív négy egymástól független üregből (kamrából) áll, amelyek partíciókkal vannak osztva:

  • két felső - bal és jobb atria;
  • és két bal alsó és jobb kamra.

A szív jobb oldala magában foglalja a jobb átriumot és a kamrát. A szív bal oldalát a bal kamra és az átrium képviseli.

Az alsó és felső üreges vénák belépnek a jobb pitvarba, és a tüdővénák belépnek a bal pitvarba. A pulmonalis artériák (más néven pulmonalis törzs) kilépnek a jobb kamrából. A bal kamrából a emelkedő aorta emelkedik.

Szívfal szerkezete

Szívfal szerkezete

A szív védelmet nyújt a túlterhelő és más szervek ellen, amit perikardiának vagy perikardiás zsáknak neveznek (egyfajta boríték, ahol az orgona be van zárva). Két réteg van: a külső sűrű szilárd kötőszövet, a pericardium rostos membránja és a belső (perikardiális serózus).

Ezt követi egy vastag izomréteg - a szívizom és az endokardium (vékony kötőszövet belső szíve).

Így maga a szív három rétegből áll: az epikardiumból, a szívizomból, az endokardiumból. A szívizom összehúzódása a véredényeket szivattyúzza a test edényein keresztül.

A bal kamra falai körülbelül háromszor nagyobbak, mint a jobb oldali falak! Ezt a tényt azzal magyarázza, hogy a bal kamra funkciója a vér áramlását jelenti a szisztémás keringésbe, ahol a reakció és a nyomás sokkal nagyobb, mint a kicsiben.

Szívszelepek

Szívszelep eszköz

A speciális szívszelepek lehetővé teszik a véráramlás folyamatos fenntartását a jobb (egyirányú) irányban. A szelepek egymás után kinyílnak és bezáródnak, akár a vér beengedésével, akár az út útjának blokkolásával. Érdekes, hogy mind a négy szelep ugyanazon sík mentén helyezkedik el.

A jobb oldali pitvar és a jobb kamra között egy tricuspid szelep található. Három speciális tányér-szárnyat tartalmaz, amely a jobb kamra összehúzódása során védelmet nyújt az átriumban lévő vér fordított áramától (regurgitációjától).

Hasonlóképpen, a mitrális szelep működik, csak a szív bal oldalán helyezkedik el, és szerkezetükben kétirányú.

Az aorta szelep megakadályozza a vér kiáramlását az aortából a bal kamrába. Érdekes, hogy amikor a bal kamra megköti, az aorta szelep a vérnyomás következtében megnyílik, így az aortába kerül. Ezután a diasztolé alatt (a szív relaxációs periódusa) az artériából való véráramlás hozzájárul a szelepek bezárásához.

Általában az aorta szelepnek három szórólapja van. A szív leggyakoribb veleszületett rendellenessége a kétcsúcsú aorta szelep. Ez a patológia az emberi populáció 2% -ában fordul elő.

A jobb kamra összehúzódásának idején a pulmonáris (pulmonális) szelep lehetővé teszi a vér áramlását a pulmonális törzsbe, és a diaszole során nem teszi lehetővé az ellenkező irányba történő áramlást. Három szárnyból is áll.

Szíverek és koszorúér-keringés

Az emberi szívnek szüksége van ételre és oxigénre, valamint bármely más szervre. A szívet vérrel ellátó (tápláló) hajókat koronárianak vagy koszorúérnek nevezik. Ezek az edények elágaznak az aorta alapjából.

A szívkoszorúérek a szívet vérrel látják el, a koszorúér-vénák eltávolítják a dezoxigenált vért. Azokat a artériákat, amelyek a szív felszínén vannak, epikardiálisnak nevezzük. A szubendokardiális elváltozásokat koszorúér artériáknak nevezik, amelyek a szívizomzatban mélyen rejtve vannak.

A szívizomból származó vér kiáramlása többnyire három szívvénán keresztül történik: nagy, közepes és kicsi. A koszorúér-szinusz kialakulása a jobb pitvarba esik. A szív elülső és kisebb vénái közvetlenül a jobb pitvarba szállítják a vért.

A szívkoszorúerek két típusra oszthatók: jobbra és balra. Ez utóbbi az elülső interventricularis és boríték artériákból áll. Nagy szívvénás ágak a szív hátsó, középső és kis vénáiba.

Még a tökéletesen egészséges embereknek is megvan a sajátos sajátosságai a koszorúér-keringésben. A valóságban a hajók másképp is megjelenhetnek, mint a képen láthatóak.

Hogyan alakul ki a szív (forma)?

Minden testrendszer kialakulásához a magzat saját vérkeringést igényel. Ezért a szív az első funkcionális szerv, amely az emberi embrió testében keletkezik, körülbelül a magzati fejlődés harmadik hetében jelentkezik.

Az embrió az elején csak egy sejtcsoport. De a terhesség folyamán egyre többé válnak, és most összekapcsolódnak, programozott formában. Először két csövet alakítunk ki, amelyek azután egybe kerülnek. Ez a cső összecsukódik és lefelé haladva hurkot képez - az elsődleges szívhurkot. Ez a hurok a növekedés minden fennmaradó sejtje előtt van, és gyorsan meghosszabbodik, majd jobbra van (talán balra, ami azt jelenti, hogy a szív tükörszerű lesz) gyűrű formájában.

Tehát általában a fogamzás utáni 22. napon a szív első összehúzódása következik be, és a 26. napra a magzatnak saját vérkeringése van. A további fejlődés magában foglalja a szepta előfordulását, a szelepek kialakulását és a szívkamrák átalakítását. Az ötödik hétre a partíciók alakulnak ki, a szívszelepek pedig a kilencedik héten alakulnak.

Érdekes, hogy a magzat szíve egy hétköznapi felnőtt gyakoriságával kezdődik - 75-80 percenként. Ezután a hetedik hét elején az impulzus percenként kb. 165-185 ütés, ami a maximális érték, majd lassulás. Az újszülött impulzus értéke 120-170 darab / perc.

Fiziológia - az emberi szív elve

Vizsgálja meg részletesen a szív alapelveit és mintáit.

Szívciklus

Amikor egy felnőtt nyugodt, a szíve percenként kb. A pulzus egy ütése egy szívciklusnak felel meg. Ilyen sebességcsökkenés esetén egy ciklus körülbelül 0,8 másodpercet vesz igénybe. Ebből az időből a pitvari összehúzódás 0,1 másodperc, kamrai - 0,3 másodperc és relaxációs időszak - 0,4 másodperc.

A ciklus gyakoriságát a szívfrekvencia-illesztőprogram határozza meg (a szívizom azon része, amelyben impulzusok lépnek fel, amelyek szabályozzák a szívfrekvenciát).

A következő fogalmak különböztethetők meg:

  • Systole (összehúzódás) - szinte mindig ez a fogalom magában foglalja a szív kamrájának összehúzódását, ami a véráramláshoz vezet az artériás csatorna mentén, és az artériákban a nyomás maximalizálása.
  • Diasztol (szünet) - az a időszak, amikor a szívizom a relaxációs stádiumban van. Ezen a ponton a szív kamrái vérrel vannak töltve és az artériákban a nyomás csökken.

Így a vérnyomás mérése mindig két mutatót rögzít. Például vegye fel a 110/70 számokat, mit jelentenek?

  • 110 a felső szám (szisztolés nyomás), azaz a szívverés idején az artériák vérnyomása.
  • 70 az alacsonyabb szám (diasztolés nyomás), vagyis az artériák vérnyomása a szív relaxáció idején.

A szívciklus egyszerű leírása:

Szívciklus (animáció)

A szív, az atria és a kamrák (nyílt szelepeken keresztül) ellazulása idején vérrel töltik meg.

  • Az atria szisztoléja (összehúzódása) következik be, amely lehetővé teszi, hogy a vér teljes mértékben a vérlemezkékből a kamrába kerüljön. A pitvari összehúzódás a vénák beáramlásának helyén kezdődik, ami garantálja a szájuk elsődleges összenyomását és a vér képtelenségét visszavezetni a vénákba.
  • Az atria pihen, és a szelepek, amelyek elválasztják az atriát a kamráktól (tricuspid és mitral), közel vannak. A kamrai szisztolés előfordul.
  • A kamrai szisztolé a vér a bal kamrán és a jobb kamrán keresztül a pulmonalis artériába tolja az aortába.
  • Ezután egy szünet (diastole) jön létre. A ciklus megismétlődik.
  • Feltételesen, egy impulzus-ütem esetén két szívverés (két szisztolés) van, először az atria csökken, majd a kamrák. A kamrai szisztolén kívül a pitvari sistolia is fennáll. Az atria összehúzódása nem hordozza az értéket a szív mért munkájában, mivel ebben az esetben elegendő a relaxációs idő (diaszole) a kamrák vérrel való feltöltéséhez. Ha azonban a szív egyre gyakrabban elkezd megverni, a pitvari szisztolé válik döntővé - anélkül, hogy a kamrák egyszerűen nem rendelkeznének idővel a vérrel való töltéshez.

    Az artériákon áthaladó véráramlást csak a kamrák összehúzódásával végezzük, ezeket a toló-összehúzódásokat impulzusoknak nevezik.

    Szívizom

    A szívizom egyedisége abban rejlik, hogy képes az ritmikus automatikus összehúzódásokra, váltakozva a pihenéssel, ami folyamatos az élet során. Megoszlik az atria és a kamrai szívizom (középső izomréteg), ami lehetővé teszi számukra, hogy egymástól elkülönüljenek.

    Kardiomiociták - a szív speciális izomsejtjei, amelyek különösen összehangoltak a gerjesztési hullám továbbítására. Tehát a kardiomiocitáknak két típusa van:

    • A hétköznapi dolgozók (a szívizomsejtek teljes számának 99% -a) úgy vannak kialakítva, hogy szívritmus-szabályozóval jelzést kapjanak szívizomsejtek vezetésével.
    • speciális vezetőképességű (a szívizomsejtek teljes számának 1% -a) kardiomiociták képezik a vezetőképességet. Funkciójukban a neuronokra hasonlítanak.

    A vázizomhoz hasonlóan, a szív izma is képes növelni a térfogatot és növeli munkájának hatékonyságát. A tartós sportolók szívmennyisége 40% -kal nagyobb lehet, mint egy hétköznapi emberé! Ez a szív hasznos hipertrófiája, ha nyúlik, és több vér szivattyúzására képes. Van egy másik hipertrófia - a "sport szív" vagy "bika szív".

    A lényeg az, hogy egyes sportolók növelik az izom tömegét, és nem az a képességük, hogy nagy mennyiségű vért nyújtsanak és átnyúljanak. Ennek oka a felelőtlen összeállított képzési programok. A fizikai gyakorlatot, különösen az erőt, a kardio alapján kell építeni. Ellenkező esetben a felkészületlen szív túlzott fizikai terhelése miokardiális distruktúrát okoz, ami korai halálhoz vezet.

    Szív-vezetési rendszer

    A szív vezetőképes rendszere olyan speciális képződmények csoportja, amelyek nem szabványos izomrostokból (vezetőképes kardiomiocitákból) állnak, amelyek a szívosztályok harmonikus munkájának biztosítására szolgálnak.

    Impulzus út

    Ez a rendszer biztosítja a szív automatizálását - a külső inger nélkül kardiomiocitákban született impulzusok gerjesztését. Egy egészséges szívben a fő impulzusforrás a sinus csomópont (sinus csomópont). Ő vezeti és átfedik az összes többi pacemakerből származó impulzusokat. De ha bármely betegség a szinusz csomópont gyengeségének szindrómájához vezet, akkor a szív többi része átveszi a funkcióját. Tehát az atrioventrikuláris csomópont (a második sor automata középpontja) és az ő (harmadik rendű AC) kötege aktiválható, ha a sinus csomópont gyenge. Vannak esetek, amikor a másodlagos csomópontok fokozzák saját automatizmust és a sinus csomópont normál működését.

    A szinusz csomópont a jobb pitvar felső hátsó falában helyezkedik el a felső vena cava szája közvetlen közelében. Ez a csomópont impulzusokat indít kb. 80-100-szor percenként.

    Az atrioventricularis csomópont (AV) az atrioventrikuláris septum alsó részén található. Ez a partíció megakadályozza az impulzusok terjedését közvetlenül a kamrákba, megkerülve az AV csomópontot. Ha a szinusz csomópont gyengül, akkor az atrioventrikulum átveszi a funkcióját, és 40-60 percenkénti gyakorisággal elkezdi továbbítani az impulzusokat a szívizomba.

    Ezután az atrioventricularis csomópont átmegy az His-kötegébe (az atrioventrikuláris köteg két lábra van osztva). A jobb láb a jobb kamrába rohan. A bal láb két további felére oszlik.

    Az ő kötegének bal lábával való helyzet nem teljesen ismert. Úgy gondoljuk, hogy a szálak elülső ágának bal oldala a bal kamra elülső és oldalsó falához rohan, és a szálak hátsó ága biztosítja a bal kamra hátsó falát és az oldalsó fal alsó részeit.

    A sinus csomópont gyengesége és az atrioventricularus blokádja esetében az His köteg 30-40 perces sebességgel képes impulzusokat létrehozni.

    A vezetési rendszer mélyül, majd kisebb ágakba vonul, végül a Purkinje szálakra fordul, amely áthatol a teljes szívizomban, és a kamrák izomzatának összehúzódására szolgál. A Purkinje szálak 15-20 perces frekvenciával képesek impulzusokat indítani.

    Kivételesen jól képzett sportolók normális szívfrekvenciával rendelkezhetnek a legalacsonyabb rögzített számig - mindössze 28 szívverés percenként! Az átlagos személy számára, még ha nagyon aktív életmódot is vezet, az 50-szeres percenkénti pulzusszám a bradycardia jele lehet. Ha ilyen alacsony pulzusú, akkor kardiológusnak kell vizsgálnia.

    Szívritmus

    Az újszülött szívfrekvenciája körülbelül 120 ütés / perc lehet. Növekedés esetén a hétköznapi ember pulzusa 60 és 100 ütem / perc között stabilizálódik. A jól képzett sportolók (akik jól képzett szív- és érrendszeri és légzőrendszerrel foglalkoznak) percenkénti 40-100 ütemű pulzust tartalmaznak.

    A szív ritmusát az idegrendszer szabályozza - a szimpatikus erősíti a összehúzódásokat, és a paraszimpatikus gyengül.

    A szív aktivitása bizonyos mértékben függ a vérben lévő kalcium- és káliumionok tartalmától. Más biológiailag aktív anyagok is hozzájárulnak a szívritmus szabályozásához. A szívünket gyakrabban kezdhetjük megverni az endorfinok és hormonok hatására, amelyek a kedvenc zenéid vagy a csók hallgatása során válnak szét.

    Ezen túlmenően az endokrin rendszer jelentősen befolyásolhatja a szívritmust, valamint a kontrakciók gyakoriságát és erősségét. Például az adrenalin felszabadulása a mellékvese által okozott szívfrekvencia növekedését eredményezi. Az ellentétes hormon acetil-kolin.

    Szívhangok

    A szívbetegségek diagnosztizálásának egyik legegyszerűbb módja a mellkasi sztetofonendoszkóp (auscultation) hallgatása.

    Egy egészséges szívben a standard auscultation végrehajtásakor csak két szívhang hallható - az S1 és S2 neve:

    • S1 - a hang akkor hallható, amikor az atrioventrikuláris (mitrális és tricuspid) szelepek a kamrák szisztoléjában (összehúzódása) zárva vannak.
    • S2 - a félárnyékos (aorta és pulmonális) szelepek zárásakor a kamrai diasztolé (relaxáció) során keletkező hang.

    Mindegyik hang két komponensből áll, de az emberi fülhöz egymásba egyesülnek, mivel nagyon kis idő áll fenn. Ha normál auscultation körülmények között további hangok hallhatók, akkor ez a szív- és érrendszeri betegségre utalhat.

    Néha a szívben további anomális hangok hallhatók, amelyeket szívhangoknak hívnak. Általában a zaj jelenléte jelzi a szív bármely patológiáját. Például a zaj a vér helytelen működése vagy a szelep károsodása miatt visszafordulhat az ellenkező irányban (regurgitáció). A zaj azonban nem mindig a betegség tünete. A további hangok megjelenésének okait a szívben az echokardiográfia (a szív ultrahang) készítése jelenti.

    Szívbetegség

    Nem meglepő, hogy a szív- és érrendszeri betegségek száma növekszik a világban. A szív egy összetett szerv, amely ténylegesen nyugszik (ha a pihenésnek nevezhető) csak a szívverések közötti időközönként. Bármilyen összetett és folyamatosan működő mechanizmus önmagában megköveteli a leggondosabb hozzáállást és folyamatos megelőzést.

    Képzeljük csak el, milyen szörnyű teher esik a szívre, tekintettel életmódunkra és alacsony minőségű bőséges ételünkre. Érdekes módon a szív- és érrendszeri megbetegedések aránya meglehetősen magas a magas jövedelmű országokban.

    A gazdag országok lakossága által felhasznált hatalmas mennyiségű élelmiszer és a végtelen pénzkeresés, valamint a kapcsolódó stressz elpusztítja a szívünket. A kardiovaszkuláris megbetegedések elterjedésének másik oka a hipodinamia - egy katasztrofálisan alacsony fizikai aktivitás, amely elpusztítja az egész testet. Vagy éppen ellenkezőleg, az írástudatlan szenvedély a nehéz fizikai gyakorlatokhoz, gyakran a szívbetegségek hátterében, melynek jelenléte nem is gyanakodik és nem tud meghalni az „egészség” gyakorlatok során.

    Életmód és szív egészsége

    A szív- és érrendszeri betegségek kialakulásának kockázatát növelő fő tényezők:

    • Elhízás.
    • Magas vérnyomás.
    • Emelkedett vér koleszterinszintje.
    • Hypodynamia vagy túlzott edzés.
    • Bőséges, alacsony minőségű élelmiszerek.
    • Depressziós érzelmi állapot és stressz.

    A nagyszerű cikk olvasása fordulópont az életedben - adja fel a rossz szokásokat és változtassa meg életmódját.

    A szív és a vérerek működése, a szívciklus fázisa (1. rész).

    A szív talán az emberi test legfontosabb izma. Naponta több mint 100 000-szer szerződést köt, és 60 000 véredényen több mint 760 liter vért pumpál.

    A szív munkáját ciklikusan végzik. A ciklus megkezdése előtt a szív nyugodt állapotban van, az atria és a kamrák vérrel vannak kitöltve. A szív összehúzódási ciklusának kezdete az átrium összehúzódása, aminek következtében egy további mennyiségű vér kerül a kamrába. Ezután pihenjen az atria, és a kamrák elkezdenek szerződni, és a vérét a kisülőedényekbe (a tüdőbe átáramló pulmonalis artériába) és a vérbe más szerveket hordozó aortába nyomják. A vér kiürítése után a kamrák ellazulnak és egy általános relaxációs fázis kezdődik. A szív összehúzódási fázisát szisztolének nevezik, és a relaxációs fázist diasztolisz szívnek nevezik.

    Az emberi szív 4 kamra, amely a bal pitvarból és a bal kamrából, valamint a jobb oldali pitvarból és a jobb kamrából áll.

    A szív a testünk motorja. Ez egy izmos szivattyú, amelynek fő funkciója összehúzódó - a vér folyamatos körkörös mozgása a szervezetben. Az oxigént a tüdőből szállítják a szövetekbe, és a CO2, amely az egyik "salak", a tüdőbe kerül, ahol a vér újra oxigénnel gazdagodik. Vérrel együtt a tápanyagokat a test minden sejtjére szállítják, és egyéb „salakokat” távolítanak el belőlük, amelyeket a szervezetből kivágási szervek (például vesék) segítségével távolítanak el.

    A szív munkája, a vérellátási rendszer.

    A szívből véreket szállító hajókat artériáknak nevezik. Az erek, amelyeken keresztül a vér belép a szívbe, a vénák. Az oxigénnel dúsított vért artériának nevezik, és kevés oxigén, de sok CO2-vénás.

    A legnagyobb artéria az aorta, közvetlenül a szív bal kamrájából megy át, a legkisebb edények a kapillárisok, a falakon keresztül, ahol az oxigénnel és tápanyaggal dúsított vér a test szöveteivel cserélhető. A szén-dioxiddal és anyagcsere-hulladékkal telített vért összegyűjti a vénulákban, majd a vénákon keresztül, a toxinoktól felszabadulva a kiválasztási szervekben, visszalép a szívbe, amely a tüdőbe tolja a szén-dioxidból és oxigénnel való dúsításból. A tüdőből az oxigénnel dúsított vér a tüdővénákon keresztül ismét belép a bal pitvarba, a bal kamra az aortába pumpálja, és a vér körkörös mozgásának új ciklusa kezdődik.

    A szív, a szívizom (miokardium) oxigént és tápanyagokat szállít az aortából távozó koszorúér-erek. Ez egy szíves étel, amely nagyszerű és fontos munkát végez. A diastol (pihenés) idején a vér kitölti a koszorúéreket, és a szív szisztoléjának idején a vér elhagyja őket.

    A szív ciklusa.

    Nagy és kis kör a vérkeringés. A kis kör a jobb kamrában kezdődik és a bal pitvarban végződik. Ez szolgál a szív táplálására és a vér oxigénnel történő gazdagítására. Pulmonalisnak is nevezik, mivel a vér áthalad a tüdőben.

    A nagy kör (a bal kamrától a jobb oldali átriumig) felelős az egész test vérellátásáért, kivéve a tüdőt.

    A véredények falai nagyon rugalmasak, és a vér nyomásától függően nyúlhatnak és kúposak. A véredény falának izomelemei mindig bizonyos feszültségben vannak, amit hangnak nevezünk. A vaszkuláris tonus, valamint az erősség és a szívfrekvencia biztosítja a véráramban a vérnek a test minden részére történő szállításához szükséges nyomást. Ezt a hangot, valamint a szív aktivitásának intenzitását a vegetatív idegrendszer (az idegrendszer felosztása, amely a belső szervek aktivitását szabályozza, a belső és külső szekréció mirigyei, a vér és a nyirokerek). A szervezet szükségleteitől függően, a paraszimpatikus részleg, ahol az acetil-kolin a fő közvetítő (közvetítő) (a neuromuszkuláris transzmissziót végző neurotranszmitter, valamint a paraszimpatikus idegrendszer fő neurotranszmittere), kiterjeszti a véredényeket és lelassítja a szív összehúzódását és a szimpatikus (közvetítő a noradrenalin, mellékvesehormon és neurotranszmitter) - éppen ellenkezőleg, szűkíti a véredényeket és felgyorsítja a szívet.

    A normál nyomás 120/80.

    A nyomás az artériákban, a szisztolés idején - szisztolés nyomás - 120 mm Hg.

    Nyomás az artériákban a szív diasztolája alatt - diasztolés vérnyomás - 80 mm Hg.

    Az orvostudományban a 140/90 ütés / perc fölötti nyomást hipertóniának nevezik. Nyomás 100/60 bpm. hipotenziónak nevezik.

    A pulzusszám (pulzus) a 60-90 ütem / perc tartományba esik. nyugalomban. Ha a stroke száma kevesebb, mint 60, akkor ezt bradycardianak nevezik, ha több mint 90 stroke van, akkor tachycardia. A szív szabálytalan összehúzódását aritmianak nevezik. A sportolók ciklikus sportjai és a pulzusok nyugalmával járó szerelmesei 50 - 40 ütés / perc. Ez arra utal, hogy a szív képzett, nagy löketmennyiséggel (PP), hatékonyan szivattyúzza a vért.

    Szívciklus

    Szívciklus röviden

    A szív ritmikusan és ciklikusan szerződik. Egy ciklus 0,8-0,85 másodpercig tart, ez körülbelül 72-75 vágás (ütés) percenként.

    Fő fázisok:

    Systole - az izomréteg (szívizom) összehúzódása és a szívüregekből történő vér felszabadulása. Először is, a szív szerződése, majd az atria, majd a kamrák. A összehúzódás a szív felett a fülektől a kamrákig terjed. A szívizom összehúzódását kiváltja a gerjesztés, és a gerjesztés a felső részén lévő szinatrialis csomóponttól kezdődik.

    Diastole - a szívizom relaxációja (miokardium). Ugyanakkor nő a szívizom vérellátása és az anyagcsere folyamatai. A diasztolé alatt a szív üregei vérrel töltődnek: mind az atriák, mind a kamrák egyidejűleg. Fontos megjegyezni, hogy a vér egyidejűleg mind az atriákat, mind a kamrákat tölti ki A diaszolában az atria és a kamra (atrioventrikuláris) közötti szelepek nyitva vannak.

    Teljes szívciklus

    A gerjesztés a szívizomon keresztüli mozgásának szempontjából a ciklusnak az atria gerjesztésével és összehúzódásával kell kezdődnie, mivel Ők az, hogy a szív fő szívritmus-szabályozója, a sino-pitvari csomópont izgat.

    Rhythm driver

    A szívfrekvencia-meghajtó a szívizom speciális része, amely önállóan elektrokémiai impulzusokat generál, amelyek izgatják a szívizomot, és összehúzódáshoz vezetnek.

    Embereknél a vezető szívritmus-szabályozó a szinusz-pitvari (szinopatia) csomópont. Ez a szívszövet régiója, amely „pacemaker” sejteket tartalmaz, azaz spontán gerjesztésre képes sejtek. A jobb pitvar ívében található, közel a felső vena cava belsejébe. A csomópont kis számú, a vegetatív idegrendszerből származó neuronok végei által beidegzett szívizomrostokból áll. Fontos megérteni, hogy a vegetatív innerváció nem hozza létre a szívimpulzus független ritmusát, hanem csak szabályozza (megváltoztatja) a ritmust, amelyet maguk a szívritmus-szabályozó sejtek állítanak be. A sino-pitvari csomópontban a szív minden élesedésének hulláma keletkezik, ami a szívizom összehúzódásához vezet, és a következő hullám megjelenésének ösztönzőjeként szolgál.

    A szívciklus fázisa

    Tehát a gerjesztő hullám által kiváltott szív összehúzódási hulláma az atriával kezdődik.

    1. Az atria szisztoléja (összehúzódása) - a fülekkel együtt - 0,1 s. Az atria szerződést kötött, és a vért már a kamrába nyomta. A kamrákban vér is van, amelyet a diasztolé vénáiból infundálnak, áthaladva az atria és a nyitott atrioventrikuláris szelepeken. Az átrium összehúzódása következtében a kamrákba további részecskéket öntünk.

    2. Az atria diasztolája (relaxációja) - az atria relaxációja a kontrakció után, 0,7 másodpercig tart. Így az atria pihenőideje sokkal hosszabb, mint a munkájuk ideje, és fontos tudni. A vér nem térhet vissza a kamrából az atriába az atria és a kamrák közötti speciális atrioventrikuláris szelepek következtében (tricuspid a jobb oldalon és bicipid, vagy mitrális, a bal oldalon). Így a diasztolában lévő atria falai nyugodtak, de a vér nem áramlik a kamrákba. Ebben az időszakban a szív 2 üres és 2 töltött kamrával rendelkezik. A vér a vénákból kezd átfolyni. Először is, a lassú vér kitölti a nyugodt atriákat. Ezután a kamrák összehúzódása és relaxációja után megnyomja a nyomást a nyomással és belép a kamrákba. A pitvari diaszole még nincs vége.

    És végül, a szinopatriás csomópontban születik egy új felkiáltó hullám, és befolyása alatt az atria szisztolába megy, és a vérben felgyülemlett vért a kamrákba tolja.

    3. Kamrai szisztolé - 0,3 s. A gerjesztésből, valamint az interventricularis septumból a gerjesztés hulláma jön létre, és eléri a kamrai myocardiumot. A kamrák száma csökken. A vérnyomást a kamrákból az artériákba szabadítják fel. Balról - az aortába, annak érdekében, hogy a vérkeringés nagy köre mentén futhasson, és jobbra - a pulmonális törzsbe, annak érdekében, hogy a vérkeringés kis köre mentén fusson. A maximális kamra és a maximális vérnyomás biztosítja a bal kamrát. A szív minden kamrájának legerősebb szívizomja van.

    4. A kamrák diasztolája - 0,5 s. Ne feledje, hogy a többi ismét hosszabb, mint a munka (0,5 s és 0,3). A kamrák ellazultak, az artériák határán lévő félszárnyas szelepek zárva vannak, nem engedik, hogy a vér visszatérjen a kamrákba. Atrioventrikuláris (atrioventrikuláris) szelepek nyitva vannak. Elkezdi kitölteni a kamrák vérét, amely belép az őket az atriából, de eddig még nem fordult elő az atria. A szív mind a 4 kamara, azaz a kamrák és az atria nyugodt.

    5. A szív teljes diasztolája - 0,4 s. Az atriák és a kamrák falai nyugodtak. A kamrák tele vannak az üreges vénákból, a 2/3-os és az atria-ból átáramló vérrel.

    6. Új ciklus. A következő ciklus kezdődik - pitvari szisztolé.

    Videó: A vér szivattyúzása a szívbe

    Ezen információk konszolidálásához nézd meg az animált szívciklus diagramot:

    Részletek a szív kamráinak munkájáról

    1. Systole.

    2. Exile.

    3. Diasztol

    Ventrikuláris szisztolé

    1. A szisztolés periódus, azaz csökkentés, két fázisból áll:

    1) Az aszinkron redukció fázisa 0,04 s. A kamrai fal egyenetlen összehúzódása következik be. Ezzel egyidejűleg az interventricularis septum összehúzódása következik be. Ennek következtében a kamrákban nyomás keletkezik, és ennek következtében az atrioventrikuláris szelep bezárul. Ennek eredményeként a kamrák izolálódnak az atriából.

    2) Izometrikus összehúzódási fázis. Ez azt jelenti, hogy az izmok hossza nem változik, bár feszültségük nő. A kamrai térfogata szintén nem változik. Minden szelep zárva van, a kamrák falai kötnek össze, és hajlamosak szerződni. Ennek eredményeként a kamrák falai feszülnek, de a vér nem mozog. De ez megnöveli a vér belsejében a vér nyomását, megnyitja az artériák félszárnyú szelepeit, és a vér felé néz ki.

    2. A vér kiutasításának ideje - 0,25 másodperc.

    1) A gyors kiutasítás fázisa - 0,12 s.

    2) A lassú kiutasítás fázisa - 0,13 s.

    A vér kivonása a szívből

    A vérnyomást a bal kamrából az aortába préselik. A nyomás az aortában drámai módon növekszik, és kiterjed, nagy vérmennyiséggel. A fal rugalmassága miatt azonban az aorta azonnal újra zsugorodik, és az artériákon keresztül vezeti a vért. Az aorta kiterjesztése és összehúzódása keresztirányú hullámot hoz létre, amely bizonyos sebességgel terjed az edényeken keresztül. Ez egy hullám a hajó falának - egy impulzus hullám - kibontakozásának és összehúzódásának hulláma. Sebessége nem egyezik a vérmozgás sebességével.

    Az impulzus az artériás fal terjeszkedésének és összehúzódásának keresztirányú hulláma, amelyet az aorta expanziója és összehúzódása okoz, amikor a vér a szív bal kamrájából felszabadul.

    Diastole kamrák

    Protodiasztikus időszak - 0,04 s. A kamrai szisztolés végétől a félig tartó szelepek bezárásáig. Ebben az időszakban a vér egy része visszatér a vérkeringésbe a vérkeringés körében a vér nyomása alatt.

    Izometrikus relaxációs fázis - 0,25 s. Minden szelep zárva van, az izomrostok csökkentek, még nem nyúlnak. De a feszültségük csökken. Az atriában a nyomás nagyobb lesz, mint a kamrákban, és ez a vérnyomás megnyitja az atrioventrikuláris szelepeket, amelyek lehetővé teszik a vér átjutását az atomokból a kamrákba.

    Töltési fázis A szív egy közös diasztolája, amelybe a vér minden kamrájába betöltődik, először gyorsan, majd lassan. A vér áthalad az atrián, és kitölti a kamrákat. A kamrákat 2/3 térfogatban vérrel töltik. Ebben a pillanatban a szív funkcionális 2-kamra, mert csak a bal és a jobb felét választják el egymástól. Anatómiailag mind a 4 kamera megmarad.

    Presistola. A kamrákat végül vérrel töltik a pitvari szisztolé következtében. A kamrák még mindig nyugodtak, míg az atria már csökkent.

    Szívciklus. Systole és pitvari diaszol

    Szívciklus és annak elemzése

    A szívciklus a szív szisztoléja és diasztolája, amelyet rendszeresen szigorú szekvenciában megismételünk, azaz idővel, köztük egy összehúzódással és az atria és a kamrai relaxációval.

    A szív ciklikus működésében két fázist különböztetünk meg: a szisztolát (összehúzódást) és a diasztolt (relaxáció). A szisztolé alatt a szív üregei felszabadulnak a vérből, és a diaszole alatt vérrel töltik. A periódus és a kamrai egy szisztolét és egy diasztolt tartalmazó időszakot, valamint az őket követő általános szünetet a szív aktivitásának ciklusaként nevezik.

    Az állatok pitvari szisztoléja 0,1–0,16 s, a kamrai szisztolé pedig 0,5–0,56 s. A teljes szívszünet (egyidejű pitvari és kamrai diaszole) 0,4 s. Ebben az időszakban a szív nyugszik. A teljes szívciklus 0,8 - 0,86 másodpercig tart.

    A pitvari funkció kevésbé összetett, mint a kamrai funkció. A pitvari szisztolé véráramlást biztosít a kamrákhoz és 0,1 s-ig tart. Ezután az atria áthalad a diaszol-fázisban, amely 0,7 másodpercig tart. A diasztolé alatt az atria vérrel töltött.

    A szívciklus különböző fázisainak időtartama a szívfrekvenciától függ. Gyakoribb szívverések esetén az egyes fázisok időtartama, különösen a diasztolé, csökken.

    A szívciklus fázisa

    A szívciklus alatt értsük meg azt az időszakot, amely egy összehúzódást - szisztolát és egy relaxációt - pitvari és kamrai diasztolát - egy általános szünetet ért. A szívciklus teljes időtartama 75 ütés / perc szívfrekvencia mellett 0,8 s.

    A szív összehúzódása a pitvari szisztolával kezdődik, ami 0,1 s. A nyomás az atriában 5-8 mm Hg-ra emelkedik. Art. A pitvari szisztolt helyettesíti egy 0,33 s időtartamú kamrai szisztolé. A kamrai szisztolé több szakaszra és fázisra oszlik (1. ábra).

    Ábra. 1. A szívciklus fázisa

    A feszültség időtartama 0,08 s, és két fázisból áll:

    • a kamrai szívizom aszinkron összehúzódásának fázisa 0,05 másodpercig tart. Ebben a fázisban a gerjesztés és a kontrakció folyamata a kamrai myocardiumon keresztül terjedt. A kamrákban a nyomás még mindig közel van a nullához. A fázis végére a kontrakció a szívizom összes rostját fedi le, és a kamrákban a nyomás gyorsan növekszik.
    • az izometrikus összehúzódás fázisa (0,03 s) - kezdődik a kamrai-kamrai szelepek becsapása. Amikor ez megtörténik, én vagy szisztolés, szívhang. A szelepek és a vér elmozdulása az atria irányába nyomást fejt ki az atriában. A kamrákban a nyomás gyorsan növekszik: 70-80 mm Hg-ig. Art. bal és 15-20 mm Hg között. Art. jobbra.

    A swing és a semilunar szelepek még mindig zárva vannak, a kamrai térfogat állandó marad. Mivel a folyadék gyakorlatilag összenyomhatatlan, a miokardiális szálak hossza nem változik, csak a stresszük nő. Gyorsan növekvő vérnyomás a kamrákban. A bal kamra gyorsan körbe fordul, és erővel eléri a mellkasfal belső felületét. Az ötödik átmeneti térben, 1 cm-re a középkagyló vonalától balra, az apikális impulzust határozzuk meg.

    A stresszidő végére a bal és jobb kamrai gyorsan növekvő nyomás magasabb lesz, mint az aorta és a pulmonalis artériában fellépő nyomás. A kamrákból származó vér ezekbe az edényekbe rohan.

    A vér kamrából történő kiutasításának ideje 0,25 másodpercig tart, és egy gyors (0,12 s) fázisból és egy lassú kiutasítás fázisából áll (0,13 s). A kamrai nyomás ugyanakkor nő: balra 120-130 mm Hg. Cikk és a jobb oldali 25 mm Hg. Art. A lassú kiürítési fázis végén a kamrai myocardium elkezd pihenni, a diasztolé kezdődik (0,47 s). A kamrák nyomása csökken, az aortából és a pulmonalis artériából származó vér visszahúzódik a kamrák üregébe, és „félretesz” a félig-szelepeket, és egy II.

    A kamrai pihenés kezdetétől a félig tartó szelepek becsapódásához szükséges időt protodiasztolés időszaknak (0,04 s) nevezzük. A félig-szelepek becsapása után a kamrák nyomása csökken. Ekkor a levélszelepek még mindig zárva vannak, a kamrában maradt vér mennyisége és következésképpen a szívizomszálak hossza nem változik, ezért ezt az időszakot izometrikus relaxáció időtartamának (0,08 s) nevezik. A kamrák nyomásának végén az alacsonyabb, mint az atriákban, a pitvari kamrai szelepek nyitva vannak, és az atriából a vér belép a kamrákba. Megkezdődik a kamrai töltés időszaka, amely 0,25 másodpercig tart és gyors (0,08 s) és lassú (0,17 s) töltés fázisaira oszlik.

    A kamrák falainak rezgése a vér gyors áramlása miatt a harmadik szívhang megjelenését eredményezi. A lassú töltési fázis végén a pitvari szisztolé fordul elő. Az atria egy további mennyiségű vért injektál a kamrába (0,1 s-os presisztolés periódus), amely után új kamrai aktivitási ciklus kezdődik.

    A szív falainak oszcillációja, amit az atria összehúzódása és a kamrákba történő további véráramlás okoz, a negyedik szívhang megjelenéséhez vezet.

    A szív szokásos meghallgatása esetén a hangos I és II hangok jól hallhatóak, a csendes III és IV hangok csak a szívhangok grafikus rögzítésével jelennek meg.

    Emberben a percenkénti szívverések száma jelentősen változhat, és különböző külső hatásoktól függ. A fizikai munka vagy a sport terhelése esetén a szív percenként 200-szor csökkenthető. Az egyik szívciklus időtartama 0,3 s. A szívverések számának növekedését tachycardianak nevezik, míg a szívciklus csökken. Alvás közben a szívverések száma percenként 60-40 ütemre csökken. Ebben az esetben egy ciklus időtartama 1,5 másodperc. A szívverések számának csökkentése bradycardia, és a szívciklus növekedése.

    Szívciklus szerkezete

    A szívritmusok a szívritmus-szabályozó által meghatározott frekvenciával követendők. Az egyetlen szívciklus időtartama a szív összehúzódásának gyakoriságától és például 75 ütés / perc gyakoriságától függ, 0,8 s. A szívciklus általános szerkezete diagramként ábrázolható (2. ábra).

    Amint az a 2. ábrából látható, Az 1. ábra, amikor a szívciklus időtartama 0,8 s (a kontrakciók gyakorisága 75 ütés / perc), az atria 0,1 s-os szisztolés állapotban van, és 0,7 s diasztolus állapotban van.

    A szisztolé a szívciklus fázisa, beleértve a szívizom összehúzódását és a vér szívből az érrendszerbe történő kiürülését.

    A diasztol a szívciklus fázisa, amely magában foglalja a szívizom relaxációját és a szív üregeinek vérrel való feltöltését.

    Ábra. 2. A szívciklus általános szerkezetének diagramja. A sötét négyzetek pitvari és kamrai szisztolát mutatnak, fényes - diasztolájuk

    A kamrák szisztolés állapotban vannak körülbelül 0,3 másodpercig és diasztolus állapotban körülbelül 0,5 másodpercig. Ugyanakkor a diasztol állapotában az atria és a kamrai körülbelül 0,4 s (a szív teljes diasztolája). A kamrai szisztolit és diasztolt a szívciklus periódusaira és fázisaira osztjuk (1. táblázat).

    1. táblázat: A szívciklus időszakai és fázisai

    Kamra szisztolé 0,33 s

    Feszültség időtartama - 0,08 s

    Aszinkron redukciós fázis - 0,05 s

    Izometrikus redukciós fázis - 0,03 s

    A száműzetés ideje 0,25 s

    Gyors kiutasítási fázis - 0,12 s

    Lassú kiutasítási fázis - 0,13 s

    Diastole kamrák 0,47

    Relaxációs idő - 0,12 s

    Protodiasztolic intervallum - 0,04 s

    Izometrikus relaxációs fázis - 0,08 s

    Töltési idő - 0,25 s

    Gyors töltési fázis - 0,08 s

    Lassú töltési fázis - 0,17 s

    Az aszinkron összehúzódás fázisa a szisztolé kezdeti szakasza, amelyben a gerjesztési hullám a kamrai myocardiumon keresztül terjed, de a cardiomyocyták egyidejű csökkenése és a kamrai nyomás 6-8 és 9-10 mm Hg között van. Art.

    Az izometrikus összehúzódási fázis olyan szisztolés stádium, amelynél az atrioventrikuláris szelepek bezárulnak, és a kamrában a nyomás gyorsan 10-15 mm Hg-ra emelkedik. Art. jobb és 70-80 mm Hg között. Art. balra.

    A gyors kiutasítás fázisa a szisztolén, ahol a kamrákban a nyomás 20–25 mm Hg értékre emelkedik. Art. jobb és 120-130 mm Hg. Art. a bal és a vér (a szisztolés kilökődés mintegy 70% -a) belép az érrendszerbe.

    A lassú kioldódási fázis a szisztolés stádium, amelyben a vér (a fennmaradó 30% -os szisztolés túlfeszültség) lassabban áramlik az érrendszerbe. A nyomás fokozatosan csökken a bal kamrában 120-130 és 80-90 mm Hg között. Art., Jobbra - 20-25 és 15-20 mm Hg között. Art.

    Protodiasztolic időszak - az átmenet a szisztolából a diasztolába, amelyben a kamrák ellazulnak. A nyomás a bal kamrában 60-70 mm Hg-ra csökken. Cikk, természetben - akár 5-10 mm Hg-ig. Art. Az aorta és a pulmonalis artériában tapasztalt nagyobb nyomás miatt a félszárnyú szelepek bezárulnak.

    Az izometrikus pihenés időtartama a diasztolus stádiuma, amelyben a kamrák üregeit zárt atrioventrikuláris és félhegyi szelepekkel izolálják, izometrikusan ellazulnak, a nyomás 0 mm Hg-ra közelít. Art.

    A gyors feltöltési fázis a diaszole-fázis, amelyen az atrioventrikuláris szelepek nyitva vannak, és a vér nagy sebességgel rohan a kamrába.

    A lassú töltési fázis a diaszole-fázis, amelyben a vér lassan belép az üregbe az üreges vénákon és a nyílt atrioventrikuláris szelepeken keresztül a kamrákba. Ennek a fázisnak a végén a kamrák 75% -a vérrel töltött.

    Presisztolés periódus - a diasztolus stádiuma, amely egybeesik a pitvari szisztolával.

    A pitvari sistolia - a pitvari izomzat összehúzódása, amelyben a jobb oldali pitvarban a nyomás 3-8 mm Hg-ra emelkedik. Art., Bal oldalon - 8-15 mm Hg-ig. Art. és a diasztolés vér térfogatának körülbelül 25% -a (mindegyik 15-20 ml) mindegyik kamrába kerül.

    2. táblázat: A szívciklus fázisainak jellemzői

    Az atria és a kamrai szívizom összehúzódása a gerjesztés után kezdődik, és mivel a pacemaker a jobb pitvarban helyezkedik el, akciópotenciálja kezdetben a jobb és a bal oldali szívizomra terjed ki. Következésképpen a jobb pitvar myocardiuma valamivel korábban felelős a gerjesztésért és összehúzódásért, mint a bal pitvar myocardiumja. Normál körülmények között a szívciklus a pitvari szisztolával kezdődik, amely 0,1 s. A jobb és bal pitvar myocardiumának gerjesztésének nem egyidejű lefedését tükrözi a P hullám kialakulása az EKG-n (3. ábra).

    A pitvari szisztolét megelőzően az AV szelepek nyitva vannak, és a pitvari és a kamrai üregek már nagymértékben tele vannak vérrel. A pitvari szívizom vékony falainak a vérben való nyújtásának mértéke fontos a mechanoreceptorok stimulálásához és a pitvari natriuretikus peptid előállításához.

    Ábra. 3. A szív teljesítményének változása a szívciklus különböző szakaszaiban és fázisaiban

    A pitvari szisztolénál a bal pitvarban a nyomás elérheti a 10–12 mm Hg értéket. Art. És jobb oldalon - 4-8 mm Hg-ig. Az Atria a kamrákat a nyugalmi állapotban lévő nyugalmi térfogat kb. 5–15% -át kitevő vér térfogatával kiegészíti. A pitvari szisztolában a kamrákba belépő vér mennyisége a testmozgás alatt nőhet és 25-40% lehet. Az 50 évesnél idősebbeknél a további töltés mennyisége akár 40% -ra is növelhető.

    A vérnyomás az atria nyomása alatt hozzájárul a kamrai myocardium nyújtásához, és megteremti a feltételeket a hatékonyabb későbbi redukcióra. Ezért az atriák szerepet játszanak a kamrák egyfajta erősítő összehúzódási képességében. Ha ez a pitvari funkció károsodik (például pitvarfibrilláció esetén), a kamrák hatékonysága csökken, funkcionális tartalékaik csökkenése és a szívizom összehúzódási funkciójának elégtelenségére való áttérés felgyorsul.

    A pitvari szisztolés idején a vénás pulzus görbéjére a-hullámot rögzítenek, néhány ember esetében a 4. szívhangot rögzíthetjük fonokardiogram rögzítésekor.

    A ventrikuláris üregben a pitvari szisztolét követően (a diasztolájuk végén) a vér térfogatát végdiasztolésnek nevezzük, amely a kamrában az előző szisztolé után maradt vér mennyiségéből áll (természetesen a szisztolés térfogat), a vér térfogata, amely a kamrai üregben töltött diasztol a pitvari szisztoléhoz, és további vér térfogata, ami a kamrába került a pitvari szisztolába. A végső diasztolés vér mennyisége a szív méretétől függ, a vénákból kiszivárgott vér mennyisége és számos más tényező. Egy nyugodt egészséges fiatalnál 130-150 ml lehet (az életkortól, a nemtől és a testtömegtől függően 90-150 ml lehet). Ez a vér mennyisége enyhén növeli a kamrák üregében lévő nyomást, amely a pitvari szisztolénál egyenlővé válik a benne lévő nyomással, és a bal kamrában 10-12 mm Hg-ban ingadozhat. Art. És a jobb oldalon - 4-8 mm Hg. Art.

    Az EKG PQ-intervallumának megfelelő 0,12-0,2 másodperces időtartam alatt az SA-csomópont aktivitási potenciálja a kamrák apikális területére terjed ki, amelynek szívizmájában a gerjesztési folyamat kezdődik, gyorsan terjed a csúcsról a szív és az endokardiális felületre. epikardiális. A gerjesztés után kezdődik a szívizom vagy a kamrai szisztolés összehúzódása, amelynek időtartama a szív összehúzódásának gyakoriságától is függ. A pihenés körülményei között ez körülbelül 0,3 s. A kamrai szisztolé a feszültség (0,08 s) és a vér kioldódása (0,25 s).

    Mindkét kamrai szisztolét és diasztolt szinte egyszerre végzik, de különböző hemodinamikai körülmények között fordulnak elő. A bal kamra példáján egy további, részletesebben ismertetjük a szisztolén előforduló eseményeket. Összehasonlításképpen, néhány adatot adunk meg a jobb kamráról.

    A kamrai feszültség időtartama aszinkron (0,05 s) és izometrikus (0,03 s) összehúzódás fázisaira oszlik. Az aszinkron összehúzódás rövid távú fázisa a kamrai szisztolés kialakulása következtében a gerjesztési lefedettség és a myocardium különböző részeinek összehúzódásának nem egyidejű következménye. A gerjesztés (amely megfelel az EKG Q hullámának) és a szívizom összehúzódása kezdetben a papilláris izmok régiójában, az interventricularis septum apikális részében és a kamrák csúcsában jelentkezik, és körülbelül 0,03 másodperc alatt a maradék szívizomra terjed ki. Ez egybeesik a Q hullám és az R hullám felemelkedő részének EKG-be történő regisztrálásával a csúcsához (lásd 3. ábra).

    A szív csúcsa a bázis előtt kötődik, így a kamrai apikális része felemelkedik az alap felé, és ugyanabba az irányba tolja a vért. A gerjesztés által kiváltott kamrák myocardiumának területei enyhén nyúlhatnak ebben az időben, így a szív térfogata szinte változatlan marad, a vérben a vérnyomás nem változik szignifikánsan, és alacsonyabb, mint a tricuspid szelepek fölötti nagy edényekben a vérnyomás. A vérnyomás az aortában és más artériás edényekben tovább csökken, közelítve a minimális diasztolés nyomás értékéhez. A tricuspid vaszkuláris szelepek azonban zárva vannak.

    Az atria ebben az időben pihen, a vérnyomás pedig csökken: a bal pitvar esetében átlagosan 10 mm Hg-ról. Art. (presisztolés) 4 mm Hg-ig. Art. A bal kamra aszinkron összehúzódási fázisának végén a vérnyomás 9-10 mm Hg-ra emelkedik. Art. A vér, amely a szívizom összehúzódó apikális részéből nyomás alatt áll, felveszi az AV szelepek szárnyait, egymáshoz közel állnak, és a vízszinteshez közel állnak. Ebben a helyzetben a szelepeket a papilláris izmok ínszálai tartják. A szív méretének lecsökkentése a csúcsától az alapig, amely az ínszálak méretének invarianciája miatt a szelepcsúcsok elfordulásához vezethet a szívben, kompenzálható a szív papilláris izmainak összehúzódásával.

    Az atrioventrikuláris szelepek bezárásakor az 1. szisztolés szívhang hallható, az aszinkron fázis véget ér, és az izometrikus összehúzódási fázis kezdődik, amit isovolumetrikus (izovolumikus) összehúzódási fázisnak neveznek. Ennek a fázisnak a időtartama körülbelül 0,03 s, annak megvalósítása egybeesik azzal az időintervallummal, amelyben az R-hullám csökkenő része és az S-hullám kezdete az EKG-n van rögzítve (lásd 3. ábra).

    Attól a pillanattól kezdve, hogy az AV szelepek zárva vannak, normál körülmények között a két kamra ürege légmentesen lezáródik. A vér, mint bármely más folyadék, összenyomhatatlan, így a szívizomszálak összehúzódása állandó hosszúságon vagy izometrikus módban történik. A kamrai üregek térfogata állandó marad, és a szívizom összehúzódása izovolumikus módban történik. Az ilyen körülmények között a szívizom összehúzódásának feszültségének és erősségének növekedése a kamrai üregekben gyorsan növekvő vérnyomássá alakul. Az AV-septum régiójában a vérnyomás hatása alatt egy rövid eltolódás következik be az atria irányába, átkerül a beáramló vénás vérbe, és azt tükrözi a c-hullám megjelenése a vénás pulzus görbéjén. Rövid idő alatt - körülbelül 0,04 másodperc alatt - a bal kamrai üregben a vérnyomás az aortában ezen a ponton értékéhez hasonlítható értéket ér el, amely a 70-80 mm Hg minimális szintre csökkent. Art. A jobb kamra vérnyomása eléri a 15-20 mm Hg-ot. Art.

    A bal kamrában a vérnyomás feleslege az aorta diasztolés vérnyomásának értéke fölött az aorta szelepek megnyitása és a szívizom feszültségének változása a vér kiürülésével jár együtt. A véredények félszárnyú szelepeinek megnyitásának oka a vérnyomás gradiens és szerkezetük zsebszerű tulajdonsága. A szelepek szelepei a véredények falai felé nyomódnak a kamrák által kiszabadított véráramlással.

    A száműzetett vér időtartama körülbelül 0,25 másodperc, és a gyors kiáramlás (0,12 s) és a lassú kiáramlás (0,13 s) fázisaira oszlik. Ebben az időszakban az AV-szelepek zárt állapotban maradnak, a félig szelepek nyitva maradnak. Az időszak elején a vér gyors kiutasítása több okból is következik. A cardiomyocyták gerjesztésének kezdetétől körülbelül 0,1 másodpercet vett igénybe, és az akciós potenciál a fennsík fázisban van. A kalcium a nyílt, lassú kalcium csatornákon keresztül tovább folyik a sejtbe. Így a szívizom rostjainak magas feszültsége, amely már a kiutasítás kezdetén volt, tovább nő. A myocardium tovább erõsíti a csökkenő vérmennyiséget, amit a kamrai üreg további nyomásnövekedése kísér. A kamrai üreg és az aorta közötti vérnyomás-gradiens növekszik, és a vér nagy sebességgel elkezd kiürülni az aortába. A gyors kioldódás fázisában a kamrából a kiürülés teljes időtartama alatt kilépő vér stroke térfogatának több mint a fele (kb. 70 ml) szabadul fel az aortába. A gyors vérkioldás fázisának végén a bal kamrában és az aortában a nyomás elérte a maximális értékét - kb. 120 mm Hg. Art. a pihenő fiataloknál és a tüdő törzsében és a jobb kamrában - kb. 30 mm Hg. Art. Ezt a nyomást szisztolésnek nevezik. A gyors vérkioldás fázisa az S hullám végének és az ST intervallum izoelektromos részének az EKG-n a T-hullám megkezdése előtt történő rögzítésének ideje alatt történik (lásd 3. ábra).

    A stroke térfogatának 50% -ának gyors kiürülésével az aorta véráramlási sebessége rövid idő alatt körülbelül 300 ml / s (35 ml / 0,12 s) lesz. Az érrendszer artériás részéből származó vér átlagos kiáramlási sebessége körülbelül 90 ml / s (70 ml / 0,8 s). Így 0,12 másodperc alatt több mint 35 ml vér kerül az aortába, és ez idő alatt körülbelül 11 ml vér áramlik belőle az artériákba. Nyilvánvaló, hogy ahhoz, hogy rövid időre nagyobb mennyiségű vér áramoljon az áramlóhoz képest, meg kell növelni a „túlzott” vérmennyiséget kapó edények kapacitását. A szerződő myocardium kinetikai energiájának egy részét nemcsak a vér kiáramlására fordítják, hanem az aorta falának és a nagy artériák rugalmas rostjainak nyújtására is kapacitásuk növelése érdekében.

    A vér gyors kiutasításának fázisának kezdetén a véredények falainak tágulása viszonylag egyszerű, de mivel egyre több vér kerül ki, és egyre több vér húzódik, a feszültség ellenáll. A rugalmas rostok nyújtásának határértéke kimerült, és az edényfalak merev kollagénszálai nyúlik ki. A perifériás edények és a vér ellenállása zavarja a véráramlást. A myocardiumnak nagy mennyiségű energiát kell költenie az ellenállások leküzdésére. Az izometrikus feszültségfázis során felhalmozódott izomszövet potenciális energiája és a szívizom rugalmas szerkezete kimerül, és a kontrakció erőssége csökken.

    A vér kiutasításának sebessége csökkenni kezd, és a gyors kiutasítás fázisát a lassú kiáramlási fázis váltja fel, amelyet a csökkent kiutasítás fázisának is neveznek. Időtartama kb. 0,13 s. A kamrai térfogat csökkenésének üteme csökken. A kamrai és az aorta vérnyomása ennek a fázisnak a kezdetén szinte azonos sebességgel csökken. Ekkor a lassú kalciumcsatornák bezárása következik be, és a cselekvési potenciál fennsík fázisa véget ér. A kalcium belépése a kardiomiocitákba csökken, és a myocita membrán belép a 3. fázisba - a végső repolarizációba. A szisztolés véget ér, a vér kiáramlási ideje és a kamrák diasztolája kezdődik (időben megfelel az akciós potenciál 4. fázisának). A csökkentett kiutasítás végrehajtása akkor történik meg, amikor a T-hullám felvételre kerül az EKG-n, és a szisztolé befejezése és a diaszole kezdete a T-hullám végének időpontjában jelentkezik.

    A szív kamrájának szisztoléjában a vég diasztolés vér térfogatának több mint fele (kb. 70 ml) kerül ki belőle. Ezt a kötetet a vér stroke térfogatának nevezzük, a vér sokktérfogata a szívizom kontraktilitásának növekedésével, és ezzel ellentétben az elégtelen kontraktilitással csökkenhet (lásd a szív és a szívizom összehúzódásának pumpáló funkciójának további mutatóit).

    A diasztol elején a kamrákban a vérnyomás alacsonyabb lesz, mint a szívtől eltérő artériás vérnyomás. Ezekben az edényekben a vér az edényfalak feszített rugalmas rostjainak erők hatására megy át. A véredények lumenje helyreáll, és néhány vérmennyiség kiszorul. A vér egy része a perifériára áramlik. A vér egy másik része a szív kamráinak irányában eltolódik, és amikor visszafelé mozog, kitölti a tricuspid vaszkuláris szelepek zsebét, amelynek széleit a vér záró nyomáskülönbsége zárja és tartja.

    A diasztol kezdetétől a vaszkuláris szelepek összeomlásáig terjedő időintervallumot (kb. 0,04 s) protodiasztolés intervallumnak nevezzük, ezen intervallum végén a 2. diasztolés szívmegállás rögzítésre és megfigyelésre kerül. Az EKG és a fonokardiogram szinkron felvételével a második hang kezdete az EKG T hullámának végén kerül rögzítésre.

    A kamrai myocardium diasztolája (kb. 0,47 s) szintén relaxációs és töltési periódusokra oszlik, ami viszont fázisokra oszlik. Mivel a kamrai üreg félhegyi érrendszeri szelepeinek bezárása zárt állapotban van, 0,08, mivel az AV-szelepek ekkor még zárva vannak. A szívizom relaxációját, elsősorban az intra- és extracelluláris mátrix rugalmas szerkezeteinek tulajdonságai miatt, izometrikus körülmények között végezzük. A szív kamrai üregében a vég diasztolés térfogatának kevesebb, mint 50% -a marad a szisztolé után. A kamrai üregek térfogata ebben az időben nem változik, a kamrai vérnyomás gyorsan csökken, és 0 mm Hg-ra csökken. Art. Emlékezzünk rá, hogy ez idő alatt a vér a 0,3 másodpercig folytatta a visszatérést az atriákhoz, és az atriák nyomása fokozatosan nőtt. Abban az időben, amikor az atriában a vérnyomás meghaladja a kamrák nyomását, az AV-szelepek nyitva vannak, az izometrikus relaxációs fázis véget ér, és a kamrák vérrel való töltésének ideje megkezdődik.

    A töltési idő kb. 0,25 másodpercig tart, és a gyors és lassú töltés fázisaira oszlik. Közvetlenül az AV-szelepek megnyitása után a vérgráfia a nyomásgradiens mentén gyorsan áramlik az atriából a kamrai üregbe. Ezt megkönnyíti a pihentető kamrai szívóhatás, ami összefüggésben van a miokardium és a kötőszöveti keret tömörítése során keletkező rugalmas erők hatásával. A gyors töltési fázis elején a 3. diasztolés szívhang formájában megjelenő hang rezgések rögzíthetők a fonokardiográfiában, amit az AV szelepek megnyitása és a vér kamrákba történő gyors átállítása okozott.

    Ahogy a kamrák kitöltése csökken, az atria és a kamrák közötti nyomásesés csökken, és körülbelül 0,08 másodperc után a gyors töltési fázis a kamrák lassú töltési fázisához vezet, ami körülbelül 0,17 s. A kamrák vérrel való töltése ebben a fázisban főként az edényeken áthaladó vérben fennmaradó kinetikus energia megőrzésének köszönhető, amelyet a szív korábbi összehúzódása okoz.

    0,1 s a kamrai vérrel való lassú töltés fázisának vége előtt befejeződik a szívciklus, új akciós potenciál keletkezik a szívritmus-szabályozóban, a következő pitvari szisztolét végzik, és a kamrákat végdiasztolés vér-térfogatokkal töltik meg. Ezt a 0,1 másodperces időtartamot, a végső szívciklust, néha a kamrák további töltésének periódusaként is nevezik a pitvari szisztolában.

    A szív mechanikus szivattyúzási funkcióját jellemző integrális indikátor a szív percenkénti szivattyúzott vérmennyisége, vagy a perc vérmennyisége (IOC):

    IOC = HR • PF,

    ahol HR a percenkénti pulzusszám; PP - a szív stroke térfogata. Általában nyugalomban a fiatalembernek a NOB körülbelül 5 liter. Az IOC szabályozását különböző mechanizmusok végzik a pulzus és a PP változásán keresztül.

    A szívritmusra gyakorolt ​​hatás a pacemaker sejtek tulajdonságainak megváltozásával érhető el. A PP-re gyakorolt ​​hatás a miokardiális cardiomyocyták kontraktilitására gyakorolt ​​hatásával és összehúzódásának szinkronizálásával érhető el.